全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Coumestan类天然产物合成及其生物活性研究进展
Research Progress on the Synthesis and Biological Activity of Coumestan Natural Products

DOI: 10.12677/jocr.2024.121008, PP. 96-110

Keywords: Coumestan类天然产物,香豆素,四环内酯,骨架构筑,生物活性
Coumestan Natural Products
, Coumarin, Tetracyclic Lactone, Skeleton Construction,Biological Activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Coumestans是一类以四环内酯为核心骨架的天然产物,主要存在于蝶形花科(Papilionaceae),豆科(Leguminosae),菊科(Compositae)等植物中,具有广泛的药理作用和生理活性,如抗肿瘤、抗菌、抗病毒、止血、治疗骨质疏松、雌激素样作用等。近年来,随着化学合成和生物技术的发展,人们对Coumestan类天然产物的骨架构筑及其生物活性进行了深入研究。本文将全面梳理Coumestan类天然产物的结构特征、骨架构筑方法以及其生物活性方面的最新研究进展。
Coumestans are a class of natural compounds characterized by a four-ring lactone as their core structure. They are predominantly found in plants of the Fabaceae (Papilionaceae), Leguminosae, Compositae, and other botanical families, exhibiting diverse pharmacological and physiological activities such as anti-tumor, antimicrobial, antiviral, hemostatic, treatment of osteoporosis, and estrogenic effects. In recent years, with advancements in chemical synthesis and biotechnology, there has been a profound exploration of the scaffold construction and biological activities of coumestan-type natural products. This article aims to comprehensively review the structural features, methods of scaffold construction, and the latest research developments in the biological activities of coumestan-type natural products.

References

[1]  Borges, F., Roleira, F., Milhazes, N., Santana, L. and Uriarte, E. (2005) Simple Coumarins and Analogues in Medicinal Chemistry: Occurrence, Synthesis and Biological Activity. Current Medicinal Chemistry, 12, 887-916.
https://doi.org/10.2174/0929867053507315
[2]  Stefanachi, A., Leonetti, F., Pisani, L., et al. (2018) Coumarin: A Natural, Privileged and Versatile Scaffold for Bioactive Compounds. Molecules, 23, Article No. 250.
https://doi.org/10.3390/molecules23020250
[3]  Hoult, J. and Paya, M. (1996) Pharmacological and Biochemical Actions of Simple Coumarins: Natural Products with Therapeutic Potential. General Pharmacology, 27, 713-722.
https://doi.org/10.1016/0306-3623(95)02112-4
[4]  Creaven, B.S., Czeglédi, E., Devereux, M., Enyedy, é.A., Foltyn-Arfa Kia, A., Karcz, D., Kellett, A., McClean, S., Nagy, N.V., Noble, A., Rockenbauer, A., Szabó-Plánka, T. and Walsh, M. (2010) Biological Activity and Coordination Modes of Copper(II) Complexes of Schiff Base-Derived Coumarin Ligands. Dalton Transactions, 39, 10854-10865.
https://doi.org/10.1039/c0dt00068j
[5]  Bhavsar, D., Trivedi, J., Parekh, S., et al. (2011) Synthesis and in Vitro Anti-HIV Activity of N-1,3-Benzo[D]Thiazol-2-Yl-2-(2-Oxo-2H-Chromen-4-Yl)acetamide Derivatives Using MTT Method. Bioorganic & Medicinal Chemistry Letters, 21, 3443-3446.
https://doi.org/10.1016/j.bmcl.2011.03.105
[6]  Vazquez-Rodriguez, S., Figueroa-Guínez, R., Matos, M.J., Santana, L., Uriarte, E., Lapier, M., Maya, J.D. and Olea-Azar, C. (2013) Synthesis of Coumarin-Chalcone Hybrids and Evaluation of Theirantioxidant and Trypanocidal Properties. Medicinal Chemistry Communication, 4, 993-1000.
https://doi.org/10.1039/c3md00025g
[7]  Zwergel, C., et al. (2013) Novel Benzofuran-Chromone and-Coumarin Derivatives: Synthesis and Biological Activity in K562 Human Leukemia Cells. Medicinal Chemistry Communication, 4, 1571-1579.
https://doi.org/10.1039/c3md00241a
[8]  Qiang, Z.D., Shi, B.J., Song, A.B., et al. (2014) Novel 2H-Chromen Derivatives: Design, Synthesis and Anticancer Activity. RSC Advance, 45, 5607-5617.
https://doi.org/10.1002/chin.201440154
[9]  Wu, X., Huang, C., Jia, Y., et al. (2014) Novel Coumarin-Dihydropyrazole Thio-Ethanone Derivatives: Design, Synthesis and Anticancer Activity. European Journal of Medicinal Chemistry, 74, 717-725.
https://doi.org/10.1016/j.ejmech.2013.06.014
[10]  Timonen, J.M., et al. (2011) Synthesis and Anti-Inflammatory Effects of a Series of Novel 7-Hydroxycoumarin Derivatives. European Journal of Medicinal Chemistry, 46, 3845-3850.
https://doi.org/10.1016/j.ejmech.2011.05.052
[11]  Van Schie, R.M.F., et al. (2009) Genotype-Guided Dosing of Coumarin Derivatives: The European Pharmacogenetics of Anticoagulant Therapy (EU-PACT) Trial Design. Pharmacogenomics, 10, 1687-1695.
https://doi.org/10.2217/pgs.09.125
[12]  Whittaker, M., Floyd, C.D., Brown, P., et al. (2001) Design and Therapeutic Application of Matrix Metalloproteinase Inhibitors. Chemical Reviews, 101, 2205-2206.
https://doi.org/10.1021/cr0100345
[13]  Fan, G.-J., et al. (2001) A Novel Class of Inhibitors for Steroid 5alpha-Reductase: Synthesis and Evaluation of Umbelliferone Derivatives. Bioorganic & Medicinal Chemistry Letters, 11, 2361-2363.
https://doi.org/10.1016/S0960-894X(01)00429-2
[14]  Traven, F.V. (2004) New Synthetic Routes to Furocoumarins and Their Analogs: A Review. Molecules, 9, Article No. 50.
https://doi.org/10.3390/90300050
[15]  Devulapally, S., Chandraiah, G. and Kumar, P.D. (2018) A Review on Pharmacological Properties of Coumarins. Mini Reviews in Medicinal Chemistry, 18, 113-141.
[16]  Tereza, N., Jan, ?. and Petr, B. (2014) Plant Coumestans: Recent Advances and Future Perspectives in Cancer Therapy. Anti-Cancer Agents in Medicinal Chemistry, 14, 1351-1362.
https://doi.org/10.2174/1871520614666140713172949
[17]  李明汉. 天然产物Bavacoumestan A-C的全合成研究[D]: [硕士学位论文]. 兰州: 兰州交通大学, 2022.
[18]  邹建平, 陆忠娥. Coumestane化学[J]. 淮海工学院学报(自然科学版), 1997(4): 63-72.
[19]  Gvindachari, T.R., Nagarajan, K. and Pai, B.R. (1956) 126. Chemical Examination of Wedelia calendulacea. Part I. Structure of Wedelolactone. Journal of the Chemical Society, 629-632.
https://doi.org/10.1039/jr9560000629
[20]  Bickoff, E.M., Booth, A.N., Lyman, R.L., et al. (1957) Coumestrol, a New Estrogen Isolated from Forage Crops. Science, 126, 969-970.
https://doi.org/10.1126/science.126.3280.969.b
[21]  Bickoff, E.M., Booth, A.N., Lyman, R.L., et al. (1957) Coumestrol, a New Estrogen Isolated from Forage Crops. Science, 126, 969-970.
https://doi.org/10.1126/science.126.3280.969.b
[22]  Gupta, S., Jha, B., Gupta, G.K., Gupta, B.K. and Dhar, K.L. (1990) Coumestans from Seeds of Psoralea-corylifolia. Phytochemistry, 29, 2371-2373.
https://doi.org/10.1016/0031-9422(90)83082-C
[23]  Won, T.H., Song, I., Kim, K., Yang, W., Lee, S.K., Oh, D., Oh, W.K., Oh, K. and Shin, J. (2015) Bioactive Metabolites from the Fruits of Psoralea corylifolia. Journal of Nature Products, 78, 666-673.
https://doi.org/10.1021/np500834d
[24]  Chai, M.-Y. (2020) A New Bioactive Coumestan from the Seeds of Psoralea corylifolia. Journal of Asian Natural Product Research, 22, 295-301.
https://doi.org/10.1080/10286020.2018.1563073
[25]  Zhu, G., Luo, Y., Xu, X., et al. (2019) Anti-Diabetic Compounds from the Seeds of Psoralea corylifolia. Fitoterapia, 139, Article ID: 104373.
https://doi.org/10.1016/j.fitote.2019.104373
[26]  Xu, Q.X., Zhang, Y., He, Z.C., Liu, Z.Y., Zhang, Y.-T., Xu, W.-R. and Yang, X.W. (2022) Constituents Promoting Osteogenesis from the Fruits of Psoralea corylifolia and Their Structure-Activity Relationship Study. Phytochemistry, 19, Article ID: 113085.
https://doi.org/10.1016/j.phytochem.2022.113085
[27]  Tu, Y.B., Yang, Y., Li, Y.F., He, C.W., et al. (2021) Naturally Occurring Coumestans from Plants, Their Biological Activities and Therapeutic Effects on Human Diseases. Pharmacological Research, 16, Article ID: 105615.
https://doi.org/10.1016/j.phrs.2021.105615
[28]  Zhang, C., Sun, Z., Zhang, D., et al. (2010) Sulphur Compounds from the Aerial Parts of Eclipta prostrata. Biochemical Systematics and Ecology, 38, 1253-1256.
https://doi.org/10.1016/j.bse.2010.12.024
[29]  McInnes, I.B. and Schett, G. (2011) The Pathogenesis of Rheumatoid Arthritis. The New England Journal of Medicine, 365, 2205-2219.
https://doi.org/10.1056/NEJMra1004965
[30]  Abbasi, M., Mousavi, M.J., Jamalzehi, S., Alimohammadi, R., Bezvan, M.H., Mohammadi, H. and Aslani, S. (2019) Strategies toward Rheumatoid Arthritis Therapy; the Old and the New. Journal of Cellular Physiology, 234, 10018-10031.
https://doi.org/10.1002/jcp.27860
[31]  Tu, Y., Wang, K., Jia, X., Tan, L., Han, B., Zhang, Q., Li, Y. and He, C. (2020) Isolation and Identification of Antiarthritic Constituents from Glycine tabacina and Network Pharmacology-Based Prediction of Their Protective Mechanisms against Rheumatoid Arthritis. Journal of Agricultural and Food Chemistry, 68, 10664-10677.
https://doi.org/10.1021/acs.jafc.0c00878
[32]  Tu, Y., Tan, L., Lu, T., et al. (2022) Glytabastan B, A Coumestan Isolated from Glycine tabacina, Alleviated Synovial Inflammation, Osteoclastogenesis and Collagen-Induced Arthritis through Inhibiting MAPK and PI3K/AKT Pathways. Biochemical Pharmacology, 197, Article ID: 114912.
https://doi.org/10.1016/j.bcp.2022.114912
[33]  Lun, S.C., Xiao, S.Q., Zhang, W., et al. (2021) Therapeutic Potential of Coumestan Pks13 Inhibitors for Tuberculosis. Antimicrobial Agents and Chemotherapy, 65, e02190-20.
[34]  Ha, N.M., Hop, N.Q. and Son, N.T. (2022) Wedelolactone: A Molecule of Interests. Fitoterapia, 164, Article ID: 105355.
https://doi.org/10.1016/j.fitote.2022.105355
[35]  Wagner, H. and Fessler, B. (1986) In-Vitro-5-Lipoxygenasehemmung Durch Eclipta Alba Extrakte Und Das Coumestan-Derivat Wedelolacton. Planta Medica, 52, 374-377.
https://doi.org/10.1055/s-2007-969189
[36]  Werz, O. (2007) Inhibition of 5-Lipoxygenase Product Synthesis by Natural Compounds of Plant Origin. Planta Medica, 73, 1331-1357.
https://doi.org/10.1055/s-2007-990242
[37]  Javad, S., Senem, K., Balakyz, Y., et al. (2020) Pharmacological Activities of Psoralidin: A Comprehensive Review of the Molecular Mechanisms of Action. Frontiers in Pharmacology, 11, Article 571459.
https://doi.org/10.3389/fphar.2020.571459
[38]  Qwebani-Ogunleye, T., Kolesnikova, I.N., Steenkamp, P., et al. (2016) A One-Pot Laccase-Catalysed Synthesis of Coumestan Derivatives and Their Anticancer Activity. Bioorganic Medicinal Chemistry, 25, 1172-1182.
https://doi.org/10.1016/j.bmc.2016.12.025
[39]  Nehybova, T., et al. (2015) Wedelolactone Induces Growth of Breast Cancer Cells by Stimulation of Estrogen Receptor Signalling. The Journal of Steroid Biochemistry and Molecular Biology, 152, 76-83.
https://doi.org/10.1016/j.jsbmb.2015.04.019
[40]  Silva, D.J.A., Melo, A.P., Silva, M.N., et al. (2001) Synthesis and Preliminary Pharmacological Evaluation of Coumestans with Different Patterns of Oxygenation. Bioorganic Medicinal Chemistry Letters, 11, 283-286.
https://doi.org/10.1016/S0960-894X(00)00621-1
[41]  Takeda, N., et al. (2007) Efficient Synthesis of Benzofurans Utilizing [3,3]-Sigmatropic Rearrangement Triggered by N-Trifluoroacetylation of Oxime Ethers: Short Synthesis of Natural 2-Arylbenzofurans. European Journal of Organic Chemistry, 2007, 1491-1509.
https://doi.org/10.1002/ejoc.200601001
[42]  Tang, L.N., Pang, Y., Yan, Q., et al. (2011) Synthesis of Coumestan Derivatives via FeCl3-Mediated Oxidative Ring Closure of 4-Hydroxy Coumarins. The Journal of Organic Chemistry, 76, 2744-2752.
https://doi.org/10.1021/jo2000644
[43]  Mackey, K., et al. (2016) Cyclization of 4-Phenoxy-2-Coumarins and 2-Pyrones via a Double C-H Activation. Organic Letters, 18, 2540-2543.
https://doi.org/10.1021/acs.orglett.6b00751
[44]  Cheng, C., Chen, W. and Xu, B. (2016) Intramolecular Cross Dehydrogenative Coupling of 4-Substituted Coumarins: Rapid and Efficient Access to Coumestans and Indole[3,2-C]Coumarins. Organic Chemistry Frontiers, 3, 1111-1115.
https://doi.org/10.1039/C6QO00270F
[45]  Song, X., Luo, X., Sheng, J., Li, J., Zhu, Z., Du, Z., Miao, H., Yan, M., Li, M. and Zou, Y. (2019) Copper-Catalyzed Intramolecular Cross Dehydrogenative Coupling Approach to Coumestans from 2’-Hydroxyl-3-Arylcoumarins. RSC Advances, 9, 17391-17398.
https://doi.org/10.1039/C9RA01909J
[46]  Yan, Q., Jiang, Y., Song, X., Lu, G., Zhang, Q., Du, Z., Chan, A.S. and Zou, Y. (2022) Synthesis of Phenolic Coumestans via a Sequential Dehydrogenation/Oxa-Michael Addition Reaction of 2’,4’-Dihydroxyl-3-Arylcoumarins. The Journal of Organic Chemistry, 87, 5785-5794.
https://doi.org/10.1021/acs.joc.2c00120
[47]  Yao, T.L., Yue, D.W. and Larock, R.C. (2005) An Efficient Synthesis of Coumestrol and Coumestans by Iodocyclization and Pd-Catalyzed Intramolecular Lactonization. The Journal of Organic Chemistry, 70, 9985-9989.
https://doi.org/10.1021/jo0517038
[48]  Liu, J.X., Liu, Y.J., Du, W.T., et al. (2013) Pd-Catalyzed C-S Activation for [3 3] Annulation of 2-(Methylthio)ben-zofuran-3-Carboxylates and 2-Hydroxyphenylboronic Acids: Synthesis of Coumestan Derivatives. The Journal of Organic Chemistry, 78, 7293-7297.
https://doi.org/10.1021/jo400984h
[49]  Zhang, J., Qiu, J., Xiao, C., Yu, L., Yang, F. and Tang, J. (2016) Tandem Demethylation/Annulation/Oxidation of 2,3-Bis(2-Methoxyphenyl)-3-Oxopropanals for One-Pot Construction of Coumestans. European Journal of Organic Chemistry, 2016, 3380-3385.
https://doi.org/10.1002/ejoc.201600122

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413