全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

羟基肉桂酸转化为精细化学品的研究进展
Research Progress on the Conversion of Hydroxycinnamic Acid into Fine Chemicals

DOI: 10.12677/jocr.2024.121009, PP. 111-119

Keywords: 木质素,羟基肉桂酸,精细化学品
Lignin
, Hydroxycinnamic Acid, Fine Chemicals

Full-Text   Cite this paper   Add to My Lib

Abstract:

木质素是通过多种不同的碳–碳和碳–氧键构成的一类天然的芳香族高聚化合物,经过解聚之后可以形成各种类型的取代肉桂酸,其中羟基肉桂酸便是从木质素中提取一类重要的小分子化合物。木质素虽然具有产量大、可再生等优点,但是它的成分较为复杂,所以对其降解以及利用都充满了挑战。本文主要论述了目前将木质素中的羟基肉桂酸类化合物转化成更精细的化学品的研究进展。
Lignin is a kind of natural aromatic polymer composed of various carbon-carbon and carbon- oxygen bonds. After depolymerization, various types of substituted cinnamic acid can be formed, among which hydroxycinnamic acid is an important small molecule compound extracted from lignin. Although lignin has the advantages of large yield and renewable, its composition is more complex, so its degradation and utilization are full of challenges. This paper mainly discusses the current research progress in the conversion of hydroxycinnamic acids in lignin into more refined chemicals.

References

[1]  Hu, L.H., Pan, H., Zhou, Y.H., Zhang, M., et al. (2011) Methods to Improve Lignin’s Reactivity as a Phenol Substitute and as Replacement for Other Phenolic Compounds: A Brief Review. BioResources, 6, 3515-3525.
https://doi.org/10.15376/biores.6.3.Hu
[2]  Alwadani, N. and Fatehi, P. (2018) Synthetic and Lignin-Based Surfactants: Challenges and Opportunities. Carbon Resources Conversion, 1, 126-138.
https://doi.org/10.1016/j.crcon.2018.07.006
[3]  张玉虎, 李亚文, 刘小波, 马小辉, 张旭. 光刻胶段差对光刻图形的影响与改善[J]. 液晶与显示, 2018, 33(8): 653-660.
[4]  Uesugi, T., Okada, T., Wada, A., Kato, K., et al. (2012) The Effects of Polymer Side-Chain Structure on Roughness Formation of ArF Photoresist in Plasma Etching Processes. Journal of Physics D: Applied Physics, 45, Article ID: 075203.
https://doi.org/10.1088/0022-3727/45/7/075203
[5]  Sharma, M., Naik, A.A., Raghunathan, P. and Eswaran, S.V. (2012) Evaluation of Microlithographic Performance of “Deep UV” Resists: Synthesis and 2D NMR Studies on Alternating “High Ortho” Novolak Resins. Journal of Chemical Sciences, 124, 395-401.
https://doi.org/10.1007/s12039-011-0159-3
[6]  Abargues, R., Rodriguez-Canto, P.J., Carcia-Calzada, R. and Martinez-Pastor, J. (2012) Patterning of Conducting Polymers Using UV Lithography: The in-Situ Polymerization Approach. Journal of Physical Chemistry: C, 116, 17547-17553.
https://doi.org/10.1021/jp303425g
[7]  陕绍云, 王守宏, 支云飞. 基于天然高分子的可再生光刻材料的研究进展[J]. 精细化工, 2021, 38(10): 1945-1955.
[8]  Wasisto, H.S., Merzsch, S., Waag, A., Uhde, E., et al. (2013) Evaluation of Photoresist-Based Nanoparticle Removal Method for Recycling Silicon Cantilever Mass Sensors. Sensors and Actuators A: Physical, 202, 90-99.
https://doi.org/10.1016/j.sna.2012.12.016
[9]  Chang, C.M., Chiang, D.Y., Shiao, M.H., Yang, C.T., et al. (2013) Dual Layer Photoresist Complimentary Lithography Applied on Sapphire Substrate for Producing Submicron Patterns. Microsystem Technologies, 19, 1745-1751.
https://doi.org/10.1007/s00542-013-1881-1
[10]  曹昕. 高分辨率I-Line正性光刻胶的制备及应用性能研究[J]. 广州化学, 2015, 40(2): 1-6.
[11]  Sugita, H., Tanaka, K., Shirato, K., et al. (2015) Styryl Silsesquioxane Photoresist. Journal of Applied Polymer Science, 132, 41459-1-41459-8.
https://doi.org/10.1002/app.41459
[12]  郑金红, 黄志齐, 侯宏森. 248Nm深紫外光刻胶[J]. 感光科学与光化学, 2003, 21(5): 346-356.
[13]  Sovish, R.C. (1959) Preparation and Polymerization of P-Vinylphenol. Journal of Organic Chemistry, 24, 1345-1347.
https://doi.org/10.1021/jo01091a606
[14]  王磊, 谢益民, 刘洋. 对羟基肉桂酸的合成及工艺条件优化[J]. 化学试剂, 2009, 31(2): 131-134, 154.
[15]  K?库尼特斯基. 羟基苯乙烯及其乙酰化衍生物的方法[P]. 美国专利, CN1934061. 2001-03-21.
[16]  Hada, H., Hirayama, T., Shiono, D., Onodera, J., et al. (2005) Outgassing Characteristics of Low-Molecular-Weight Resists for Extreme Ultraviolet Lithography. Japanese Journal of Applied Physics, 44, 5824-5828.
https://doi.org/10.1143/JJAP.44.5824
[17]  陈新, 罗朝阳, 范浩军. 环氧化菜籽油基PVC增塑剂的制备与性能研究[J]. 塑料科剂, 2010, 38(10): 96-100.
[18]  Liu, T., Jiang, P.P., Liu, H.L., Li, M.T., et al. (2017) Performance Testing of a Green Plasticizer Based on Lactic Acid for PVC. Polymer Testing, 61, 205-213.
https://doi.org/10.1016/j.polymertesting.2017.05.012
[19]  Zhang, X.X., Li, Y.X., Hankett, J.M. and Chen, Z. (2015) The Molecular Interfacial Structure and Plasticizer Migration Behavior of “Green” Plasticized Poly (Vinyl Chloride). Physical Chemistry Chemical Physics, 17, 4472-4482.
https://doi.org/10.1039/C4CP05287K
[20]  Yin, B. and Hakkarainen, M. (2011) Oligomeric Isosorbide Esters as Alternative Renewable Resource Plasticizers for PVC. Journal of Applied Polymer Science, 119, 2400-2407.
https://doi.org/10.1002/app.32913
[21]  Chaudhary, B.I., Nguyen, B.D., Smith, P., Sunday, N., et al. (2014) Bis (2-Ethylhexy) Succinate in Mixtures with Epoxidized Soybean Oil as Bio-Based Plasticizers for Poly (Vinylchloride). Polymer Engineering and Science, 55, 634-640.
https://doi.org/10.1002/pen.23934
[22]  Bouchoul, B., Benaniba, M.T. and Massardier, V. (2014) Effect of Biobased Plasticizers on Thermal, Mechanical, and Permanence Properties of Poly (Vinyl Chloride). Journal of Vinyl and Additive Technology, 20, 260-267.
https://doi.org/10.1002/vnl.21356
[23]  Palacios, O.Y.S., Rincon, P.C.N., Corriou, J.P., Pardo, M.C., et al. (2014) Low-Molecular-Weight Glycerol Esters as Plasticizers for Poly (Vinyl Chloride). Journal of Vinyl and Additive Technology, 20, 65-71.
https://doi.org/10.1002/vnl.21351
[24]  杨勇, 贾海峰, 王文霞, 王志鹏. 对羟基肉桂酸酯类增塑剂烷基链长度变化对PVC增塑性能的影响[J]. 塑料科剂, 2019, 47(12): 141-146.
[25]  Mattila, P., Hellstrom, J. and Torronen, R. (2006) Phenolic Acids in Berries, Fruits, and Beveragea. Journal of Agricultural and Food Chemistry, 54, 7193-7199.
https://doi.org/10.1021/jf0615247
[26]  杨采风. 壳聚糖羟基肉桂酸衍生物的制备及其抑菌活性研究[D]: [硕士学位论文]. 镇江: 江苏科技大学, 2016.
[27]  Lin, W.Z., Navaratnam, S., Yao, S. and Lin, N.Y. (1998) Antioxidative Properties of Hydroxycinnamic Acid Derivatives and a Phenylpropanoid Glycoside. A Pulse Radiolysis Study. Radiation Physics and Chemistry, 53, 425-430.
https://doi.org/10.1016/S0969-806X(97)00318-6
[28]  Li, Y., Feng, L., Song, Z.F., Li, H.B. and Huai, Q.Y. (2016) Synthesis and Anticancer Activities of Glycyrrhetinic Acid Derivatives. Molecules, 21, Article 199.
https://doi.org/10.3390/molecules21020199
[29]  徐学涛, 陈洁, 邓旭阳. α-葡萄糖苷酶抑制剂及其应用[P]. 中国专利, CN111889080B. 2020-11-06.
[30]  Sheng, Z.J., Ge, S.Y., Xu, X.M., Zhang, Y., et al. (2018) Design, Synthesis and Evaluation of Cinnamic Acid Ester Derivatives as Mushroom Tyrosinase Inhibitors. MedChemComm, 9, 853-861.
https://doi.org/10.1039/C8MD00099A
[31]  Ribeiro, D., Proenca, C., Varela, C., Janela, J., et al. (2019) New Phenolic Cinnamic Acid Derivatives as Selective COX-2 Inhibitors. Design, Synthesis, Biological Activity and Structure-Activity Relationships. Bioorganic Chemistry, 91, Article ID: 103179.
https://doi.org/10.1016/j.bioorg.2019.103179
[32]  Mo, J., Yang, H.Y., Chen, T.K., Li, Q.H., et al. (2019) Design, Synthesis, Biological Evaluation, and Molecular Modeling Studies of Quinoline-Ferulic Acid Hybrids as Cholinesterase Inhibitors. Bioorganic Chemistry, 93, Article ID: 103310.
https://doi.org/10.1016/j.bioorg.2019.103310
[33]  Xue, C.B., Luo, W.C., Ding, Q. and Gao, X.X. (2008) Quantitative Structure-Activity Relationship Studies of Mushroom Tyrosinase Inhibitors. Journal of Computer Aided Molecular Design, 22, 299-309.
https://doi.org/10.1007/s10822-008-9187-6
[34]  Qiu, L., Chen, Q.H., Zhuang, J.X., Zhong, X., et al. (2009) Inhibitory Effects of α-Cyano-4-Hydroxycinnamic Acid on the Activity of Mushroom Tyrosinase. Food Chemistry, 112, 609-613.
https://doi.org/10.1016/j.foodchem.2008.06.021
[35]  Shi, Y., Chen, Q.X., Wang, Q., Song, K.K. and Qiu, L. (2005) Inhibitory Effects of Cinnamic Acid and its Derivatives on the Diphenolase Activity of Mushroom (Agaricus bisporus) Tyrosinase. Food Chemistry, 92, 707-712.
https://doi.org/10.1016/j.foodchem.2008.06.021
[36]  Okombi, S., Rival, D., Bonnet, S., Mariotte, A.M., et al. (2006) Analogues of N-Hydroxycinnamoylphenalkylamides as Inhibitors of Human Melanocyte-Tyrosinase. Bioorganic & Medicinal Chemistry Letters, 16, 2252-2255.
https://doi.org/10.1016/j.bmcl.2006.01.022
[37]  Wei, Q.Y., Jiang, H., Zhang, J.X., Guo, P.F., et al. (2012) Synthesis of N-Hydroxycinnamoyl Amino Acid Ester Analogues and Their Free Radical Scavenging and Antioxidative Activities. Medicinal Chemistry Research, 21, 1905-1911.
https://doi.org/10.1007/s00044-011-9713-2
[38]  Kubo, I., Chen, Q.X. and Nihei, K. (2003) Molecular Design of Antibrowning Agents: Antioxidative Tyrosinase Inhibitors. Food Chemistry, 81, 241-247.
https://doi.org/10.1016/S0308-8146(02)00418-1
[39]  Kubo, I. and Ikuyo, K.H. (1999) 2-Hydroxy-4-Methoxybenzaldehyde: A Potent Tyrosinase Inhibitor from African Medicinal Plants. Planta Medica, 65, 19-22.
https://doi.org/10.1055/s-1999-13955
[40]  Chen, Q.X. and Kubo, I. (2002) Kinetics of Mushroom Tyrosinase Inhibition by Quercdtin. Journal of Agricultural and Food Chemistry, 50, 4108-4112.
https://doi.org/10.1021/jf011378z
[41]  Vashisth, P., Kumar, N., Sharma, M. and Pruthi, V. (2015) Biomedical Applications of Ferulic Acid Encapsulated Electrospun Nanofibers. Biotechnology Reports, 8, 36-44.
https://doi.org/10.1016/j.btre.2015.08.008
[42]  Papuc, C., Goran, G.V., Predescu, C.N., Nicorescu, V., et al. (2017) Plant Polyphenols as Antioxidant and Antibacterial Agents for Shelf-Life Extension of Meat and Meat Products: Classification, Structures, Sources, Action Mechanisma. Comprehensive Reviews in Food Science and Food Safety, 16, 1243-1268.
https://doi.org/10.1111/1541-4337.12298
[43]  Campos, F.M., Couto, J.A., Figueiredo, A.R., et al. (2009) Cell Membrane Damage Induced by Phenolic Acids on Wine Lactic Acid Bacteria. International Journal of Food Microbiology, 135, 144-151.
https://doi.org/10.1016/j.ijfoodmicro.2009.07.031
[44]  Wei, H., Wang, Y., Jin, Z., et al. (2021) Utilization of Straw-Based Phenolic Acids as a Biofugicide for a Green Agricultural Production. Journal of Bioscience and Bioengineering, 131, 53-60.
https://doi.org/10.1016/j.jbiosc.2020.09.007
[45]  张苗苗, 陆栋, 剡倩. 细胞膜对酿酒酵母乙醇耐受性影响的研究进展[J]. 中国酿造, 2016, 35(9): 16-19.
[46]  张雯斐. 对羟基苯乙酮的合成[J]. 科协论坛(下半月), 2011(5): 103-104.
[47]  黄健翔, 黄福伟, 顾宇翔. 化妆品的防腐剂原料标准及使用情况浅析[J]. 香料香精化妆品, 2021(3): 109-113.
[48]  陈田. 化妆品用原料对羟基苯乙酮的局部毒性研究[J]. 香料香精化妆品, 2020(3): 56-60.
[49]  季申, 陈静, 刘全海. 对羟基苯乙酮及其衍生物在制备治疗胆石症的药剂中的应用[P]. 中国专利, 101108173. 2006-07-17.
[50]  Wang, J., Wang, T.T., Du, H.G., Chen, N., et al. (2023) Accessing Para-Alkylphenols via Iridium-Catalyzed Site-Specific Deoxygenation of Alcohols. The Journal of Organic Chemistry, 88, 12572-12584.
https://doi.org/10.1021/acs.joc.3c01294
[51]  Ammar, R.B., Bhouri, W., Sghaier, M.B., Boubaker, J., et al. (2009) Antioxidant and Free Radical-Scavenging Properties of Three Flavonoids Isolated from the Leaves of Rhamnus alaternus L. (Rhamnaceae): A Structure-Activity Relationship Study. Food Chemistry, 116, 258-264.
https://doi.org/10.1016/j.foodchem.2009.02.043
[52]  Liu, H., Mou, Y., Zhao, J.L., Wang, J.H., et al. (2010) Flavonoids from Halostachys Caspica and Their Antimicrobial and Antioxidant Activities. Molecules, 15, 7933-7945.
https://doi.org/10.3390/molecules15117933
[53]  Marinova, D., Ribarova, F. and Atanassova, M. (2005) Total Phenolics and Total Flavonoids in Bulgarian Fruits and Vegetables. Journal of the University of Chemical Technology and Metallurgy, 40, 255-260.
[54]  Ibrahim, M.H. and Jaafar, H.Z.E. (2011) Enhancement of Leaf Gas Exchange and Primary Metabolites under Carbon Cioxide Enrichment Up-Regulates the Production of Secondary Metabolites in Labisia pumila Seedlings. Molecules, 16, 3761-3777.
https://doi.org/10.3390/molecules16053761
[55]  Ibrahim, M.H. and Jaafar, H.Z.E. (2011) Increased Carbon Dioxide Concentration Improves the Antioxidative Properties of the Malaysian Herb Kacip Fatimah (Labisia pumila Blume). Molecules, 16, 6068-6081.
https://doi.org/10.3390/molecules16076068
[56]  Ibrahim, M.H. and Jaafar, H.Z.E. (2011) Involvement of Carbohydrate, Protein and Phenylanine Ammonia Lyase in Up-Regulation of Secondary Metabolites in Labisia pumila under Various CO2 and N2 Levels. Molecules, 16, 4172-4190.
https://doi.org/10.3390/molecules16054172
[57]  Payer, S.E., Pollak, H., Schmidbauer, B., Hamm, F., et al. (2018) Multienzyme One-Pot Cascade for the Stereoselective Hydroxyethyl Functionalization of Substituted Phenols. Organic Letters, 20, 5139-5143.
https://doi.org/10.1021/acs.orglett.8b02058

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413