全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

烯烃的不对称官能化反应研究进展
Research Progress in Asymmetric Functionalization of Olefins

DOI: 10.12677/jocr.2024.121010, PP. 120-135

Keywords: 烯烃,金属催化,有机催化,不对称官能化
Olefins
, Metal Catalysis, Organic Catalysis, Asymmetric Functionalization

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于C=C键的存在,烯烃被认为是现代有机化学中最有吸引力的底物之一。利用金属催化剂和有机催化剂在烯烃上催化加成H-Y (Y = H, B, C, N, Si等)是生成新的C-H键和C-Y键最常用和最有效的方法之一。不对称烯烃的氢官能化提供了一个直接的策略,以获得对映异构富集的分子。本文综述了利用金属和有机催化剂催化烯烃的不对称加氢官能化反应研究的进展。
Olefins are considered to be one of the most attractive substrates in modern organic chemistry due to the existence of the C=C bond. The catalytic addition of H-Y (Y = H, B, C, N, Si, etc.) on olefins using metal catalysts and organic catalysts is one of the most commonly used and effective methods to generate new C-H bonds and C-Y bonds. Hydrogen functionalization of asymmetric olefins provides a direct strategy to obtain enantioenriched molecules. In this paper, the research progress of asymmetric hydrogenation functionalization of olefins catalyzed by metal and organic catalysts is reviewed.

References

[1]  Michon, C., Abadie, M.A., Medina, F. and Agbossou-Niedercorn, F. (2017) Recent Metal-Catalysed Asymmetric Hydroaminations of Alkenes. Journal of Organometallic Chemistry, 847, 13-27.
https://doi.org/10.1016/j.jorganchem.2017.03.032
[2]  Du, X. and Zheng, H. (2017) Advances in Base-Metal-Catalyzed Alkene Hydrosilylation. ACS Catalysis, 7, 1227-1243.
https://doi.org/10.1021/acscatal.6b02990
[3]  Xie, W.B. and Li, Z. (2020) Asymmetric Synthesis of Ethers by Catalytic Alkene Hydroalkoxylation. Synthesis, 52, 2127-2146.
https://doi.org/10.1055/s-0039-1690874
[4]  Feng, S., Hao, H., Buchwald, S.L., et al. (2020) Diastereo-and Enantioselective CuH-Catalyzed Hydroamination of Strained Trisubstituted Alkenes. ACS Catalysis, 10, 282-291.
https://doi.org/10.1021/acscatal.9b04871
[5]  Zhu, S.L., Niljianskul, N. and Buchwald, S.L. (2013) Enantio-and Regioselective CuH-Catalyzed Hydroamination of Alkenes. Journal of the American Chemical Society, 135, 15746-15749.
https://doi.org/10.1021/ja4092819
[6]  Shen, X.Q. and Buchwald, S.L. (2010) Rhodium-Catalyzed Asymmetric Intramolecular Hydroamination of Unactivated Alkenes. Angewandte Chemie International Edition, 49, 564-567.
https://doi.org/10.1002/anie.200905402
[7]  Chapurina, Y., Ibrahim, H. and Hannedouche, J.M. (2011) Catalytic, Enantioselective Intramolecular Hydroamination of Primary Amines Tethered to Di-and Trisubstituted Alkenes. The Journal of Organic Chemistry, 76, 10163-10172.
https://doi.org/10.1021/jo202009q
[8]  Sevov, C.S., Zhou, J.R. and Hartwig, J.F. (2012) Iridium-Catalyzed Intermolecular Hydroamination of Unactivated Aliphatic Alkenes with Amides and Sulfonamides. Journal of the American Chemical Society, 134, 11960-11963.
https://doi.org/10.1021/ja3052848
[9]  Lin, J.S., Yu, P., Liu, X.Y., et al. (2015) Br?nsted Acid Catalyzed Asymmetric Hydroamination of Alkenes: Synthesis of Pyrrolidines BearingaTetrasubstituted Carbon Stereocenter. Angewandte Chemie, 127, 7958-7962.
https://doi.org/10.1002/ange.201501762
[10]  MacDonald, M.J., Schipper, D.J. and Beauchemin, A.M. (2011) A Catalytic Tethering Strategy: Simple Aldehydes Catalyze Intermolecular Alkene Hydroaminations. Journal of the American Chemical Society, 133, 20100-20103.
https://doi.org/10.1021/ja208867g
[11]  Reznichenko, A.L., Nguyen, H.N. and Hultzsch, K.C. (2010) Asymmetric Intermolecular Hydroamination of Unactivated Alkenes with Simple Amines. Angewandte Chemie International Edition, 49, 8984-8987.
https://doi.org/10.1002/anie.201004570
[12]  Ichikawa, S., Zhu, S.L. and Buchwald, S.L. (2018) A Modified System for the Synthesis of Enantioenriched N-Arylamines through Copper-Catalyzed Hydroamination. Angewandte Chemie International Edition, 57, 8714-8718.
https://doi.org/10.1002/anie.201803026
[13]  Vila, C., Blay, G., Pedro, J.R., et al. (2018) Enantioselective Synthesis of 2-Amino-1, 1-Diarylalkanes Bearing a Carbocyclic Ring Substituted Indole through Asymmetric Catalytic Reaction of Hydroxyindoles with Nitroalkenes. Organic Chemistry, 83, 6397-6407.
https://doi.org/10.1021/acs.joc.8b00612
[14]  Vila, C., Blay, G., Pedro, J.R., et al. (2021) Enantioselective Friedel-Crafts Reaction of Hydroxyarenes with Nitroenynes to Access Chiral Heterocycles via Sequential Catalysis. Organic & Biomolecular Chemistry, 19, 6990-6994.
https://doi.org/10.1039/D1OB01238J
[15]  Xun, W., Xu, B., Zhao, J.L., et al. (2018) Regio and Enantioselective Organocatalytic Friedel-Crafts Alkylation of 4-Aminoindoles at the C7-Position. Organic Letters, 20, 590-593.
https://doi.org/10.1021/acs.orglett.7b03703
[16]  Huang, T., Zhao, Y., Zhao, J.L., et al. (2019) C7-Functionalization of Indoles via Organocatalytic Enantioselective Friedel-Crafts Alkylation of 4-Amino-Indoles with 2-Butene-1, 4-Diones and 3-Aroylacrylates. Advanced Synthesis & Catalysis, 361, 3632-3638.
https://doi.org/10.1002/adsc.201900377
[17]  Ellman, J.A., Harada, H., Thalji, R.K., et al. (2008) Enantioselective Intramolecular Hydroarylation of Alkenes via Directed C-H Bond Activation. The Journal of Organic Chemistry, 73, 6772-6779.
https://doi.org/10.1021/jo801098z
[18]  Shinde, V.S., Mane, M.V. and Cavallo, L.G. (2020) Iridium Catalyzed Enantioselective Hydroarylation of Alkenes via C-H Bond Activation: Experiment and Computation. Chemistry: A European Journal, 26, 8308-8313.
https://doi.org/10.1002/chem.202001793
[19]  Naito, T., Yoneda, T., Nishiyama, H., et al. (2012) Enantioselective Hydrosilylation of Aromatic Alkenes Catalyzed by Chiral Bis (Oxazolinyl) Phenyl-Rhodium Acetate Complexes. Synlett, 23, 2957-2960.
https://doi.org/10.1055/s-0032-1317677
[20]  Cheng, B., Lu, P., Lu, Z., et al. (2017) Highly Enantioselective Cobalt-Catalyzed Hydrosilylation of Alkenes. Journal of the American Chemical Society, 139, 9439-9442.
https://doi.org/10.1021/jacs.7b04137
[21]  Gu, X.W., Sun, Y.L., Xu, L.W., et al. (2020)Stereospecific Si-C Coupling and Remote Control of Axial Chirality by Enantioselective Palladiumcatalyzedhydrosilylation of Maleimides. Nature Communications, 11, Article No. 2904.
https://doi.org/10.1038/s41467-020-16716-5
[22]  Zhao, Z.Y., Nie, Y.X., Xu, L.W., et al. (2019) Enantioselective Rhodium-Catalyzed DesymmetricHydrosilylation of Cyclopropenes. ACS Catalysis, 9, 9110-9116.
https://doi.org/10.1021/acscatal.9b02623
[23]  Morken, J.P., Yu, Z.Y., Eno, M.S., et al. (2015) Enantioselective Hydroformylation of 1-Alkenes with Commercial Ph-BPE Ligand. Organic Letters, 17, 3264-3267.
https://doi.org/10.1021/acs.orglett.5b01421
[24]  Watkins, A.L., Hashiguchi, B.G. and Landis, C.R. (2008) Highly Enantioselective Hydroformylation of Aryl Alkenes with Diazaphospholane Ligands. Organic Letters, 10, 4553-4556.
https://doi.org/10.1021/ol801723a
[25]  Zhang, X.M., Tan, R.C., Zheng, X., et al. (2016) Tunable P-Chiral Bisdihydrobenzooxaphosphole Ligands for Enantioselective Hydroformylation. Organic Letters, 18, 3346-3349.
https://doi.org/10.1021/acs.orglett.6b01452
[26]  Reek, J.N.H., Chikkali, S.H., Bellini, R., et al. (2012) Highly Selective Asymmetric Rh-Catalyzed Hydroformylation of Heterocyclic Olefins. Journal of the American Chemical Society, 134, 6607-6616.
https://doi.org/10.1021/ja210117z
[27]  Zhang, X.M., Wei, B., Chen, C.Y., et al. (2017) Efficient Synthesis of (S, R)-Bn-Yanphos and Rh/(S, R)-Bn-Yanphos Catalyzed Asymmetric Hydroformylation of Vinyl Heteroarenes. Organic Chemistry Frontiers, 4, 288-291.
https://doi.org/10.1039/C6QO00641H
[28]  Reider P.J., Huang, J.K., Huang, E., et al. (2005) A Highly Enantioselective Catalyst for Asymmetric Hydroformylation of [2.2.1]-Bicyclic Olefins. Tetrahedron Letters, 46, 7831-7834.
https://doi.org/10.1016/j.tetlet.2005.09.012
[29]  Xie, W.B. and Li, Z. (2021) Bis(μ-Oxo)—Dititanium(IV)—Chiral Binaphthyldisulfonate Complexes for Highly Enantioselective Intramolecular Hydroalkoxylation of Nonactivated Alkenes. ACS Catalysis, 11, 6270-6275.
https://doi.org/10.1021/acscatal.1c01146
[30]  Schlter, J., Blazejak, M., Hintermann, L., et al. (2015) Asymmetric Hydroalkoxylation of Non-Activated Alkenes: Titanium-Catalyzed Cycloisomerization of Allylphenols at High Temperatures. Angewandte Chemie International Edition, 54, 4014-4017.
https://doi.org/10.1002/anie.201409252
[31]  Zhao, P.Y., Ma, J.G., Zhao, G.Q., et al. (2019) Asymmetric Intramolecular Hydroalkoxylation of Unactivated Alkenes Catalyzed by Chiral N-Triflyl Phosphoramide and TiCl4. Chinese Journal of Chemistry, 37, 565-569.
https://doi.org/10.1002/cjoc.201900544
[32]  List, B., Tsuji, N., Kennemur, J.L., et al. (2018) Activation of Olefins via Asymmetric Br?nsted Acid Catalysis. Science, 359, 1501-1505.
https://doi.org/10.1126/science.aaq0445
[33]  List, B. and Coric, L. (2012) Asymmetric Spiroacetalizationcatalysed by Confined Br?nsted Acids. Nature, 483, 315-317.
https://doi.org/10.1038/nature10932
[34]  Nagorny, P., Sun, Z.K., Winschel, G.A. and Borovika, A. (2012) Chiral Phosphoric Acid-Catalyzed Enantioselective and Diastereoselective Spiroketalizations. Journal of the American Chemical Society, 134, 8074-8077.
https://doi.org/10.1021/ja302704m
[35]  Sevov, C.S. and Hartwig, J.F. (2013) Iridium-Catalyzed, Intermolecular Hydroetherification of Unactivated Aliphatic Alkenes with Phenols. Journal of the American Chemical Society, 135, 9303-9306.
https://doi.org/10.1021/ja4052153
[36]  Maruoka, K.J., Kano, T.C. and Tanaka, Y.H. (2007) Asymmetric Organocatalytic Oxy-Michael Addition of Alcohols to A, B-Unsaturated Aldehydes. Tetrahedron, 63, 8658-8664.
https://doi.org/10.1016/j.tet.2007.03.179
[37]  Ho, C.Y., Chan, C.W. and He, L.S. (2015) Catalytic Asymmetric Hydroalkenylation of Vinylarenes: Electronic Effects of Substrates and Chiral N-Heterocyclic Carbene Ligands. Angewandte Chemie International Edition, 54, 4512-4516.
https://doi.org/10.1002/anie.201411882
[38]  Shi, W.J., Zhang, Q., Zhou, Q.L., et al. (2006) Highly Enantioselective Hydrovinylation of R-Alkyl Vinylarenes. An Approach to the Construction of All-Carbon Quaternary Stereocenters. Journal of the American Chemical Society, 128, 2780-2781.
https://doi.org/10.1021/ja057654y
[39]  Chatterjee, S., Hintermann, L., Jaisankar, P., et al. (2017) Fiaud’s Acid: A Br?nsted Acid Catalyst for Enantioselective Friedel-Crafts Alkylation of Indoles with 2-Alkene-1, 4-Diones. Organic Letters, 19, 3426-3429.
https://doi.org/10.1021/acs.orglett.7b01383
[40]  Bi, B., Lou, Q.X. and Zhao, J.L. (2015) Chiral Phosphoric Acid Catalyzed Highly Enantioselective Friedel-Crafts Alkylation Reaction of C3-Substituted Indoles to β, γ-Unsaturated α-Ketimino Esters. Organic Letters, 17, 540-543.
https://doi.org/10.1021/ol5035222
[41]  Itoh, J., Fuchibe, K. and Akiyama, T. (2008) Chiral Phosphoric Acid Catalyzed Enantioselective Friedel-Crafts Alkylation of Indoles with Nitroalkenes: Cooperative Effect of 3 ? Molecular Sieves. Angewandte Chemie International Edition, 47, 4016-4018.
https://doi.org/10.1002/anie.200800770
[42]  Mori, K., Wakazawa, M. and Akiyama, T. (2014) Stereoselective Construction of All-Carbon Quaternary Center by Means of Chiral Phosphoric Acid: Highly Enantioselective Friedel-Crafts Reaction of Indoles with β, β-Disubstituted Nitroalkenes. Chemical Science, 5, 1799-1803.
https://doi.org/10.1039/C3SC53542H

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413