全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

可见光光氧化还原催化C-F键断裂的研究进展
Recent Advances in C-F Bond Cleavage Enabled by Visible Light Photoredox Catalysis

DOI: 10.12677/jocr.2024.121011, PP. 136-147

Keywords: 可见光,自由基,C-F键裂解,光氧化还原
Visible Light
, Radical, C-F Bond, Cleavage, Photoredox

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过容易获得的单氟或低氟化合物的C-F键裂解来产生新键受到越来越多的科学家的关注。通过这种方法,可以制备出很多有价值的氟化产品,传统的C-F键形成方法很难制造这些产品。可见光光氧化还原催化由于其温和、易于处理和环境友好的特性,已被证明是脱氟反应的重要而强大的工具。与通过双电子过程进行的经典C-F活化相比,自由基是使用可见光光氧化还原催化的关键中间体,为C-F键的断裂提供了新的方式。在这篇综述中,总结了自2018年以来可见光促进的C-F键断裂的偕-二氟烯烃、三氟甲基芳烃和三氟甲基烯烃。
The generation of new bonds by C-F bond cleavage of readily available monofluorinated or low-fluorinated compounds has received increasing attention from scientists. By this method, many valuable fluorinated products can be prepared, which are difficult to make with traditional C-F bond formation methods. Visible light photoredox catalysis has proven to be an important and powerful tool for defluorination reactions due to its mild, easy to handle and environmentally friendly properties. In contrast to classical C-F activation via a two-electron process, free radicals are key intermediates catalyzed by photoredox using visible light, providing a new mode for C-F bond breaking. In this review, GEM-difluoroolefins, trifluoromethylarenes, and trifluoromethylolefins with visible-facilitated C-F bond breakage since 2018 are summarized.

References

[1]  Kirsch, P. (2004) Modern Fluoroorganic Chemistry: Synthesis Reactivity, Applications. Wiley-VCH, Weinheim.
https://doi.org/10.1002/352760393X
[2]  Wang, B., Wang, C.-T., Li, X.-S., Sun, W.-H., Liu, X.-Y. and Liang, Y.-M. (2023) Visible-Light-Mediated C-F Bond Cleavage for the Synthesis of Polyfluorinated Compounds. Organic Chemistry Frontiers, 10, 3341-3346.
https://doi.org/10.1039/D3QO00547J
[3]  Berger, R., Resnati, G., Metrangolo, P., Weber, E. and Hulliger, J. (2011) Organic Fluorine Compounds: A Great Opportunity for Enhanced Materials Properties. Chemical Society Reviews, 40, 3496-3508.
https://doi.org/10.1039/c0cs00221f
[4]  Gillis, E.P., Eastman, K.J., Hill, M.D., Donnelly, D.J. and Meanwell, N.A. (2015) Applications of Fluorine in Medicinal Chemistry. Journal of Medicinal Chemistry, 58, 8315-8359.
https://doi.org/10.1021/acs.jmedchem.5b00258
[5]  Sicard, A.J. and Baker, R.T. (2020) Fluorocarbon Refrigerants and their Syntheses: Past to Present. Chemical Reviews, 120, 9164-9303.
https://doi.org/10.1021/acs.chemrev.9b00719
[6]  Stahl, T., Klare, H.F.T. and Oestreich, M. (2013) Main-Group Lewis Acids for C-F Bond Activation. ACS Catalysis, 3, 1578-1587.
https://doi.org/10.1021/cs4003244
[7]  Kuehnel, M.F., Lentz, D. and Braun, T. (2013) Synthesis of Fluorinated Building Blocks by Transition-Metal-Mediated Hydrodefluorination Reactions. Angewandte Chemie International Edition, 52, 3328-3348.
https://doi.org/10.1002/anie.201205260
[8]  Ahrens, T., Kohlmann, J., Ahrens, M. and Braun, T. (2015) Functionalization of Fluorinated Molecules by Transition-Metal-Mediated C-F Bond Activation to Access Fluorinated Building Blocks. Chemical Reviews, 115, 931-972.
https://doi.org/10.1021/cr500257c
[9]  Unzner, T.A. and Magauer, T. (2015) Carbon-Fluorine Bond Activation for the Synthesis of Functionalized Molecules. Tetrahedron Letters, 56, 877-883.
https://doi.org/10.1016/j.tetlet.2014.12.145
[10]  Hamel, J.-D. and Paquin, J.-F. (2018) Activation of C-F Bonds α to C-C Multiple Bonds. Chemical Communications, 54, 10224-10239.
https://doi.org/10.1039/C8CC05108A
[11]  Jaroschik, F. (2018) Picking One out of Three: Selective Single C-F Activation in Trifluoromethyl Groups. ChemistryA European Journal, 24, 14572-14582.
https://doi.org/10.1002/chem.201801702
[12]  Fujita, T., Fuchibe, K. and Ichikawa, J. (2019) Transition-Metal-Mediated and-Catalyzed C-F Bond Activation by Fluorine Elimination. Angewandte Chemie International Edition, 58, 390-402.
https://doi.org/10.1002/anie.201805292
[13]  Key, B.D., Howell, R.D. and Criddle, C.S. (1997) Fluorinated Organics in the Biosphere. Environmental Science & Technology, 31, 2445-2454.
https://doi.org/10.1021/es961007c
[14]  Prier, C.K., Rankic, D.A. and MacMillan, D.W.C. (2013) Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chemical Reviews, 113, 5322-5363.
https://doi.org/10.1021/cr300503r
[15]  Skubi, K.L., Blum, T.R. and Yoon, T.P. (2016) Dual Catalysis Strategies in Photochemical Synthesis. Chemical Reviews, 116, 10035-10074.
https://doi.org/10.1021/acs.chemrev.6b00018
[16]  Zhou, L., Hossain, M.L. and Xiao, T. (2016) Synthesis of N-Containing Heterocyclic Compounds Using Visible-Light Photoredox Catalysis. The Chemical Record, 16, 319-334.
https://doi.org/10.1002/tcr.201500228
[17]  Sharma, S., Singh, J. and Sharma, A. (2021) Visible Light Assisted Radical-Polar/Polar-Radical Crossover Reactions in Organic Synthesis. Advanced Synthesis & Catalysis, 363, 3146-3169.
https://doi.org/10.1002/adsc.202100205
[18]  Zhou, L. and Anand, D. (2019) Visible Light-Mediated C-F Bond Activation. In: Postigo, A., Ed., Late-Stage Fluorination of Bioactive Molecules and Biologically Relevant Substrates, Elsevier, Amsterdam, 159-181.
https://doi.org/10.1016/B978-0-12-812958-6.00005-7
[19]  Singh, A., Fennell, C.J. and Weaver, J.D. (2016) Photocatalyst Size Controls Electron and Energy Transfer: Selectable E/Z Isomer Synthesisvia C-F Alkenylation. Chemical Science, 7, 6796-6802.
https://doi.org/10.1039/C6SC02422J
[20]  Senaweera, S. and Weaver, J.D. (2016) Dual C-F, C-H Functionalization via Photocatalysis: Access to Multifluorinated Biaryls. Journal of the American Chemical Society, 138, 2520-2523.
https://doi.org/10.1021/jacs.5b13450
[21]  Priya, S. and Weaver, J.D. (2018) Prenyl Praxis: A Method for Direct Photocatalytic Defluoroprenylation. Journal of the American Chemical Society, 140, 16020-16025.
https://doi.org/10.1021/jacs.8b09156
[22]  Doi, R., et al. (2023) Regioselective C-F Bond Transformations of Silyl Difluoroenolates. Organic Letters, 25, 5542-5547.
https://doi.org/10.1021/acs.orglett.3c02057
[23]  You, M.W., Bian, T.C., Zhou, L.J. and Zhang, Z.X. (2023) Accessing Aryldifluoromethyl Derivatives through Alkene Insertion into Benzylic C-F Bonds. Synlett, 34, 1747-1751.
https://doi.org/10.1055/a-2068-7065
[24]  Day, J.I., Grotjahn, S., Senaweera, S., Koenig, B. and Weaver, J.D. (2021) Defluorodearomatization: A Photocatalytic Birch-Like Reduction That Enables C-C Bond Formation and Provides Access to Unnatural Cannabinoids. The Journal of Organic Chemistry, 86, 7928-7945.
https://doi.org/10.1021/acs.joc.1c00169
[25]  Xie, J., Yu, J., Rudolph, M., Rominger, F. and Hashmi, A.S.K. (2016) Monofluoroalkenylation of Dimethylamino Compounds through Radical-Radical Cross-Coupling. Angewandte Chemie International Edition, 55, 9416-9421.
https://doi.org/10.1002/anie.201602347
[26]  Wang, Q., Qu, Y., Tian, H., Liu, Y., Song, H. and Wang, Q. (2019) Trifluoromethylation and Monofluoroalkenylation of Alkenes through Radical-Radical Cross-Coupling. ChemistryA European Journal, 25, 8686-8690.
https://doi.org/10.1002/chem.201901349
[27]  Wang, J., Huang, B., Yang, C. and Xia, W. (2019) Visible-Light-Mediated Defluorinative Cross-Coupling of gem-Difluoroalkenes with Thiols. Chemical Communications, 55, 11103-11106.
https://doi.org/10.1039/C9CC05293C
[28]  Wang, J., Huang, B., Gao, Y., Yang, C. and Xia, W. (2019) Direct C-H Multifluoroarylation of Ethers through Hydrogen Atom Transfer Using Photoredox Catalysis. The Journal of Organic Chemistry, 84, 6895-6903.
https://doi.org/10.1021/acs.joc.9b00708
[29]  Orsi, D.L., Easley, B.J., Lick, A.M. and Altman, R.A. (2017) Base Catalysis Enables Access to α, α-Difluoroalkylthioethers. Organic Letters, 19, 1570-1573.
https://doi.org/10.1021/acs.orglett.7b00386
[30]  Dénès, F., Pichowicz, M., Povie, G. and Renaud, P. (2014) Thiyl Radicals in Organic Synthesis. Chemical Reviews, 114, 2587-2693.
https://doi.org/10.1021/cr400441m
[31]  Sugihara, N., Suzuki, K., Nishimoto, Y. and Yasuda, M. (2021) Photoredox-Catalyzed C-F Bond Allylation of Perfluoroalkylarenes at the Benzylic Position. Journal of the American Chemical Society, 143, 9308-9313.
https://doi.org/10.1021/jacs.1c03760
[32]  Vogt, D.B., Seath, C.P., Wang, H. and Jui, N.T. (2019) Selective C-F Functionalization of Unactivated Trifluoromethylarenes. Journal of the American Chemical Society, 141, 13203-13211.
https://doi.org/10.1021/jacs.9b06004
[33]  Xiao, T., Li, L. and Zhou, L. (2016) Synthesis of Functionalized gem-Difluoroalkenes via a Photocatalytic Decarboxylative/Defluorinative Reaction. The Journal of Organic Chemistry, 81, 7908-7916.
https://doi.org/10.1021/acs.joc.6b01620
[34]  Ichikawa, J., Fujiwara, M., Wada, Y., Okauchi, T. and Minami, T. (2000) The Nucleophilic 5-Endo-trig Cyclization of Gem-Difluoroolefins with Homoallylic Functional Groups: Syntheses of Ring-Fluorinated Dihydroheteroaromatics. Chemical Communications, No. 19, 1887-1888.
https://doi.org/10.1039/b004978f
[35]  Guo, Y.-Q., Wang, R., Song, H., Liu, Y. and Wang, Q. (2020) Visible-Light-Induced Deoxygenation/Defluorination Protocol for Synthesis of γ, γ-Difluoroallylic Ketones. Organic Letters, 22, 709-713.
https://doi.org/10.1021/acs.orglett.9b04504
[36]  Yoshida, T., Ohta, M., Emmei, T., et al. (2023) Cationic Rhodium(I) Tetrafluoroborate Catalyzed Intramolecular Carbofluorination of Alkenes via Acyl Fluoride C-F Bond Activation. Angewandte Chemie, 62, e202303657.
https://doi.org/10.1002/anie.202303657
[37]  Yu, Y.-J., Zhang, F.-L., Peng, T.-Y., Wang, C.-L., Cheng, J., Chen, C., Houk, K.N. and Wang, Y.-F. (2021) Sequential C-F Bond Functionalizations of Trifluoroacetamides and Acetates via Spin-Center Shifts. Science, 371, 1232-1240.
https://doi.org/10.1126/science.abg0781
[38]  Hu, Y., Liu, X.C., Ren, Z.Y., et al. (2022) Csp3-H Monofluoroalkenylation via Stereoselective C-F Bond Cleavage. Chemical Communications, 58, 2734-2737.
https://doi.org/10.1039/D1CC06247F
[39]  He, Y., Anand, D., Sun, Z. and Zhou, L. (2019) Visible-Light-Promoted Redox Neutral γ, γ-Difluoroallylation of Cycloketone Oxime Ethers with Trifluoromethyl Alkenes via C-C and C-F Bond Cleavage. Organic Letters, 21, 3769-3773.
https://doi.org/10.1021/acs.orglett.9b01210
[40]  Zhang, G.D., Wang, L., Cui, L.P., Gao, P. and Chen, F. (2023) Deaminativedefluoroalkylation of α-Trifluoromethylalkenes Enabled by Photoredox Catalysis. Organic & Biomolecular Chemistry, 21, 294-299.
https://doi.org/10.1039/D2OB02114E
[41]  Supranovich, V.I., Levin, V.V., Kokorekin, V.A. and Dilman, A.D. (2021) Generation of Alkyl Radicals from Thiols via Zinc Thiolates: Application for the Synthesis of gem-Difluorostyrenes. Advanced Synthesis & Catalysis, 363, 2888-2892.
https://doi.org/10.1002/adsc.202100088
[42]  Tian, Q.Q., Pei, B.Q., Wang, C.X., Zhang, C.Y. and Li, Y.H. (2022) Selective C-F Bond Etherification of Trifluoromethyl Alkenes with Phenols The Journal of Organic Chemistry, 87, 10908-10916.
https://doi.org/10.1021/acs.joc.2c01197
[43]  Anand, D., Sun, Z. and Zhou, L. (2020) Visible-Light-Mediated β-C-H gem-Difluoroallylation of Aldehydes and Cyclic Ketones through C-F Bond Cleavage of 1-Trifluoromethyl Alkenes. Organic Letters, 22, 2371-2375.
https://doi.org/10.1021/acs.orglett.0c00568
[44]  Kou, L.-G., Guo, S.-H., Gao, Y.-R., et al. (2023) Oxidative Cleavage and Fluoromethylthiolation of C=C Bonds: A General Route toward Mono-, Di-, and Trifluoromethylthioesters from Alkenes. Organic Letters, 25, 5984-5988.
https://doi.org/10.1021/acs.orglett.3c02101

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133