全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

阿尔茨海默病化学合成药及生物技术药物药的研究进展
Research Progress of Chemical Synthesis Drugs and Biotechnology Drugs for Alzheimer’s Disease

DOI: 10.12677/ojns.2024.122051, PP. 440-448

Keywords: 阿尔茨海默病,药物治疗,β-淀粉样蛋白,乙酰胆碱,N-甲基天冬氨酸,阿杜卡单
Alzheimer’s Disease
, Drug Therapy, Beta-Amyloid, Acetylcholine, N-Methylaspartic Acid, Aducanumab

Full-Text   Cite this paper   Add to My Lib

Abstract:

阿尔茨海默病(Alzheimer’s Disease, AD)是最常见的与年龄相关的不可逆和进行性神经退行性疾病之一,其特征是失智、记忆力减退、语言技能下降以及随着年龄的增长而出现认知障碍。目前的治疗药物主要以改善临床症状为主,本文通过查阅相关文献,将主要与AD相关且受美国食品药物管理局(Food and Drug Administration, FDA)所批准的治疗药物做一综述,本文系统地总结和分析当前治疗药物在AD治疗中的作用以及研究进展,以此为AD的治疗和研究提供参考和借鉴。
Alzheimer’s disease (AD) is one of the most common age-related irreversible and progressive neurodegenerative diseases, characterized by dementia, memory loss, decline in language skills, and cognitive impairment with age. Current therapeutic drugs are mainly used to improve clinical symptoms. This paper reviews the therapeutic drugs that are mainly related to AD and approved by the Food and Drug Administration (FDA) of the United States by referring to relevant literature. This article systematically summarizes and analyzes the role of current therapeutic drugs in the treatment of AD and the research progress in order to provide reference for the treatment and research of AD.

References

[1]  Magierski, R. and Sobow, T. (2016) Serotonergic Drugs for the Treatment of Neuropsychiatric Symptoms in Dementia. Expert Review of Neurotherapeutics, 16, 375-387.
https://doi.org/10.1586/14737175.2016.1155453
[2]  International, A.S.D. (2021) World Alzheimer Report 2021. Alzheimer’s Disease International.
[3]  World Health Organization (2023) Dementia.
[4]  Soria, L.J., González, H.M. and Léger, G.C. (2019) Alzheimer’s Disease. Handbook of Clinical Neurology, 167, 231-255.
https://doi.org/10.1016/B978-0-12-804766-8.00013-3
[5]  Yang, C., Yang, Q., Xiang, Y., et al. (2023) The Neuroprotective Effects of Oxygen Therapy in Alzheimer’s Disease: A Narrative Review. Neural Regeneration Research, 18, 57-63.
https://doi.org/10.4103/1673-5374.343897
[6]  Kverno, K. (2022) New Treatment Aimed at Preventing Alzheimer’s Dementia. Journal of Psychosocial Nursing and Mental Health Services, 60, 11-14.
https://doi.org/10.3928/02793695-20220324-02
[7]  Cummings, J., Lee, G., Nahed, P., et al. (2022) Alzheimer’s Disease Drug Development Pipeline: 2022. Alzheimers & Dementia: Translational Research & Clinical Interventions, 8, e12295.
https://doi.org/10.1002/trc2.12295
[8]  Nielsen, R.E., Gr?ntved, S., Lolk, A., et al. (2022) Real-World Effects of Anti-Dementia Treatment on Mortality in Patients with Alzheimer’s Dementia. Medicine, 101, e31625.
https://doi.org/10.1097/MD.0000000000031625
[9]  Garcia, M.J., Leadley, R., Lang, S., et al. (2023) Real-World Use of Symptomatic Treatments in Early Alzheimer’s Disease. Journal of Alzheimers Disease, 91, 151-167.
https://doi.org/10.3233/JAD-220471
[10]  Baker, J.E., Lim, Y.Y., Pietrzak, R.H., et al. (2017) Cognitive Impairment and Decline in Cognitively Normal Older Adults with High Amyloid-β: A Meta-Analysis. Alzheimers & Dementia: Translational Research & Clinical Interventions, 6, 108-121.
https://doi.org/10.1016/j.dadm.2016.09.002
[11]  Huang, Y.R. and Liu, R.T. (2020) The Toxicity and Polymorphism of β-Amyloid Oligomers. International Journal of Molecular Sciences, 21, Article 4477.
https://doi.org/10.3390/ijms21124477
[12]  Tiwari, S., Atluri, V., Kaushik, A., et al. (2019) Alzheimer’s Disease: Pathogenesis, Diagnostics, and Therapeutics. International Journal of Nanomedicine, 14, 5541-5554.
https://doi.org/10.2147/IJN.S200490
[13]  Agis-Torres, A., Solhuber, M., Fernandez, M., et al. (2014) Multi-Target-Directed Ligands and Other Therapeutic Strategies in the Search of a Real Solution for Alzheimer’s Disease. Current Neuropharmacology, 12, 2-36.
https://doi.org/10.2174/1570159X113116660047
[14]  Johnson, K.A., Schultz, A., Betensky, R.A., et al. (2016) Tau Positron Emission Tomographic Imaging in Aging and Early Alzheimer Disease. Annals of Neurology, 79, 110-119.
https://doi.org/10.1002/ana.24546
[15]  Hamano, T., Enomoto, S., Shirafuji, N., et al. (2021) Autophagy and Tau Protein. International Journal of Molecular Sciences, 22, Article 7475.
https://doi.org/10.3390/ijms22147475
[16]  Zhang, H., Wei, W., Zhao, M., et al. (2021) Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. International Journal of Biological Sciences, 17, 2181-2192.
https://doi.org/10.7150/ijbs.57078
[17]  Shi, Y., Manis, M., Long, J., et al. (2019) Microglia Drive APOE-Dependent Neurodegeneration in a Tauopathy Mouse Model. Journal of Experimental Medicine, 216, 2546-2561.
https://doi.org/10.1084/jem.20190980
[18]  Tapia-Rojas, C., Cabezas-Opazo, F., Deaton, C.A., et al. (2019) It’s All about Tau. Progress in Neurobiology, 175, 54-76.
https://doi.org/10.1016/j.pneurobio.2018.12.005
[19]  Contestabile, A. (2011) The History of the Cholinergic Hypothesis. Behavioural Brain Research, 221, 334-340.
https://doi.org/10.1016/j.bbr.2009.12.044
[20]  Li, Y., Fan, H., Sun, J., et al. (2020) Circular RNA Expression Profile of Alzheimer’s Disease and Its Clinical Significance as Biomarkers for the Disease Risk and Progression. The International Journal of Biochemistry & Cell Biology, 123, Article ID: 105747.
https://doi.org/10.1016/j.biocel.2020.105747
[21]  Bekdash, R.A. (2021) The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer’s Disease. International Journal of Molecular Sciences, 22, Article 1273.
https://doi.org/10.3390/ijms22031273
[22]  Feng, W., Destain, H., Smith, J.J., et al. (2022) Maintenance of Neurotransmitter Identity by Hox Proteins through a Homeostatic Mechanism. Nature Communications, 13, Article No. 6097.
https://doi.org/10.1038/s41467-022-33781-0
[23]  Rand, J.B. (2007) Acetylcholine. WormBook.
https://doi.org/10.1895/wormbook.1.131.1
[24]  Sharma, P., Srivastava, P., Seth, A., et al. (2019) Comprehensive Review of Mechanisms of Pathogenesis Involved in Alzheimer’s Disease and Potential Therapeutic Strategies. Progress in Neurobiology, 174, 53-89.
https://doi.org/10.1016/j.pneurobio.2018.12.006
[25]  Hampel, H., Mesulam, M.M., Cuello, A.C., et al. (2018) The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain, 141, 1917-1933.
https://doi.org/10.1093/brain/awy132
[26]  Collingridge, G.L., Olsen, R.W., Peters, J., et al. (2009) A Nomenclature for Ligand-Gated Ion Channels. Neuropharmacology, 56, 2-5.
https://doi.org/10.1016/j.neuropharm.2008.06.063
[27]  Jalali-Yazdi, F., Chowdhury, S., Yoshioka, C., et al. (2018) Mechanisms for Zinc and Proton Inhibition of the GluN1/GluN2A NMDA Receptor. Cell, 175, 1520-1532.E15.
https://doi.org/10.1016/j.cell.2018.10.043
[28]  Sanabria-Castro, A., Alvarado-Echeverria, I. and Monge-Bonilla, C. (2017) Molecular Pathogenesis of Alzheimer’s Disease: An Update. Annals of Neurosciences, 24, 46-54.
https://doi.org/10.1159/000464422
[29]  Campos, C., Rocha, N.B., Vieira, R.T., et al. (2016) Treatment of Cognitive Deficits in Alzheimer’s Disease: A Psychopharmacological Review. Psychiatria Danubina, 28, 2-12.
[30]  Zhu, C.C., Fu, S.Y., Chen, Y.X., et al. (2020) Advances in Drug Therapy for Alzheimer’s Disease. Current Medical Science, 40, 999-1008.
https://doi.org/10.1007/s11596-020-2281-2
[31]  Yao, W., Yang, H. and Yang, J. (2022) Small-Molecule Drugs Development for Alzheimer’s Disease. Frontiers in Aging Neuroscience, 14, Article 1019412.
https://doi.org/10.3389/fnagi.2022.1019412
[32]  Abou, B.D. (2022) An Ethnopharmacological Review on the Therapeutical Properties of Flavonoids and Their Mechanisms of Actions: A Comprehensive Review Based on up to Date Knowledge. Toxicology Reports, 9, 445-469.
https://doi.org/10.1016/j.toxrep.2022.03.011
[33]  高迪, 张海英. 阿尔茨海默病治疗药物——aducanumab[J]. 临床药物治疗杂志, 2022, 20(12): 51-55.
[34]  De La Torre, B.G. and Albericio, F. (2022) The Pharmaceutical Industry in 2021. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules, 27, Article 1075.
https://doi.org/10.3390/molecules27031075
[35]  Ferrero, J., Williams, L., Stella, H., et al. (2016) First-In-Human, Double-Blind, Placebo-Controlled, Single-Dose Escalation Study of Aducanumab (BIIB037) in Mild-to-Moderate Alzheimer’s Disease. Alzheimers & Dementia: Translational Research & Clinical Interventions, 2, 169-176.
https://doi.org/10.1016/j.trci.2016.06.002
[36]  Sevigny, J., Chiao, P., Bussière, T., et al. (2016) The Antibody Aducanumab Reduces Aβ Plaques in Alzheimer’s Disease. Nature, 537, 50-56.
https://doi.org/10.1038/nature19323
[37]  Lin, L., Hua, F., Salinas, C., et al. (2022) Quantitative Systems Pharmacology Model for Alzheimer’s Disease to Predict the Effect of Aducanumab on Brain Amyloid. CPT: Pharmacometrics & Systems Pharmacology, 11, 362-372.
https://doi.org/10.1002/psp4.12759
[38]  Herring, W.L., Gould, I.G., Fillit, H., et al. (2021) Predicted Lifetime Health Outcomes for Aducanumab in Patients with Early Alzheimer’s Disease. Neurology and Therapy, 10, 919-940.
https://doi.org/10.1007/s40120-021-00273-0
[39]  Shi, M., Chu, F., Zhu, F., et al. (2022) Impact of Anti-Amyloid-β Monoclonal Antibodies on the Pathology and Clinical Profile of Alzheimer’s Disease: A Focus on Aducanumab and Lecanemab. Frontiers in Aging Neuroscience, 14, Article 870517.
https://doi.org/10.3389/fnagi.2022.870517
[40]  Karimi, N., Bayram, ?.F., Arslan, E., et al. (2022) Tau Immunotherapy in Alzheimer’s Disease and Progressive Supranuclear Palsy. International Immunopharmacology, 113, Article ID: 109445.
https://doi.org/10.1016/j.intimp.2022.109445
[41]  Imbimbo, B.P., Ippati, S., Watling, M., et al. (2022) A Critical Appraisal of Tau-Targeting Therapies for Primary and Secondary Tauopathies. Alzheimers & Dementia: Translational Research & Clinical Interventions, 18, 1008-1037.
https://doi.org/10.1002/alz.12453
[42]  Martinez, A., Alonso, M., Castro, A., et al. (2002) First Non-ATP Competitive Glycogen Synthase Kinase 3 β (GSK-3β) Inhibitors: Thiadiazolidinones (TDZD) as Potential Drugs for the Treatment of Alzheimer’s Disease. Journal of Medicinal Chemistry, 45, 1292-1299.
https://doi.org/10.1021/jm011020u
[43]  Serenó, L., Coma, M., Rodríguez, M., et al. (2009) A Novel GSK-3β Inhibitor Reduces Alzheimer’s Pathology and Rescues Neuronal Loss in Vivo. Neurobiology of Disease, 35, 359-367.
https://doi.org/10.1016/j.nbd.2009.05.025
[44]  Hu, J.P., Xie, J.W., Wang, C.Y., et al. (2011) Valproate Reduces Tau Phosphorylation via Cyclin-Dependent Kinase 5 and Glycogen Synthase Kinase 3 Signaling Pathways. Brain Research Bulletin, 85, 194-200.
https://doi.org/10.1016/j.brainresbull.2011.03.006
[45]  Qiang, L., Sun, X., Austin, T.O., et al. (2018) Tau Does Not Stabilize Axonal Microtubules But Rather Enables Them to Have Long Labile Domains. Current Biology, 28, 2181-2189.E4.
https://doi.org/10.1016/j.cub.2018.05.045
[46]  Cheng, H. and Huang, G. (2018) Synthesis and Activity of Epothilone D. Current Drug Targets, 19, 1866-1870.
https://doi.org/10.2174/1389450119666180803122118
[47]  Zhang, B., Carroll, J., Trojanowski, J.Q., et al. (2012) The Microtubule-Stabilizing Agent, Epothilone D, Reduces Axonal Dysfunction, Neurotoxicity, Cognitive Deficits, and Alzheimer-Like Pathology in an Interventional Study with Aged Tau Transgenic Mice. Journal of Neuroscience, 32, 3601-3611.
https://doi.org/10.1523/JNEUROSCI.4922-11.2012
[48]  Atri, A. (2019) Current and Future Treatments in Alzheimer’s Disease. Seminars in Neurology, 39, 227-240.
https://doi.org/10.1055/s-0039-1678581
[49]  Soeda, Y. and Takashima, A. (2020) New Insights into Drug Discovery Targeting Tau Protein. Frontiers in Molecular Neuroscience, 13, Article 590896.
https://doi.org/10.3389/fnmol.2020.590896
[50]  Karami, A., Eriksdotter, M., Kadir, A., et al. (2019) CSF Cholinergic Index, a New Biomeasure of Treatment Effect in Patients with Alzheimer’s Disease. Frontiers in Molecular Neuroscience, 12, Article 476562.
https://doi.org/10.3389/fnmol.2019.00239
[51]  Sharma, K. (2019) Cholinesterase Inhibitors as Alzheimer’s Therapeutics (Review). Molecular Medicine Reports, 20, 1479-1487.
https://doi.org/10.3892/mmr.2019.10374
[52]  Asamoah Botchway, B.O. and Iyer, I.C. (2017) Alzheimer’s Disease—The Past, the Present and the Future. Science Journal of Clinical Medicine, 6, 1-19.
https://doi.org/10.11648/j.sjcm.20170601.11
[53]  Colovic, M.B., Krstic, D.Z., Lazarevic-Pasti, T.D., et al. (2013) Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Current Neuropharmacology, 11, 315-335.
https://doi.org/10.2174/1570159X11311030006
[54]  Li, N., Wang, J., Ma, J., et al. (2015) Neuroprotective Effects of Cistanches Herba Therapy on Patients with Moderate Alzheimer’s Disease. Evidence-Based Complementary and Alternative Medicine, 2015, Article ID: 103985.
https://doi.org/10.1155/2015/103985
[55]  Liu, Y., Zhang, Y., Zheng, X., et al. (2018) Galantamine Improves Cognition, Hippocampal Inflammation, and Synaptic Plasticity Impairments Induced by Lipopolysaccharide in Mice. Journal of Neuroinflammation, 15, Article No. 112.
https://doi.org/10.1186/s12974-018-1141-5
[56]  Dou, K.X., Tan, M.S., Tan, C.C., et al. (2018) Comparative Safety and Effectiveness of Cholinesterase Inhibitors and Memantine for Alzheimer’s Disease: A Network Meta-Analysis of 41 Randomized Controlled Trials. Alzheimers Research & Therapy, 10, Article No. 126.
https://doi.org/10.1186/s13195-018-0457-9
[57]  Fish, P.V., Steadman, D., Bayle, E.D. and Whiting, P. (2019) New Approaches for the Treatment of Alzheimer’s Disease. Bioorganic & Medicinal Chemistry Letters, 29, 125-133.
https://doi.org/10.1016/j.bmcl.2018.11.034
[58]  Khan, S., Barve, K.H. and Kumar, M.S. (2020) Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Current Neuropharmacology, 18, 1106-1125.
https://doi.org/10.2174/1570159X18666200528142429
[59]  Matsunaga, S., Kishi, T. and Iwata, N. (2015) Memantine Monotherapy for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. PLOS ONE, 10, e123289.
https://doi.org/10.1371/journal.pone.0123289
[60]  Danysz, W. and Parsons, C.G. (2012) Alzheimer’s Disease, β-Amyloid, Glutamate, NMDA Receptors and Memantine—Searching for the Connections. British Journal of Pharmacology, 167, 324-352.
https://doi.org/10.1111/j.1476-5381.2012.02057.x
[61]  Xia, P., Chen, H.S., Zhang, D., et al. (2010) Memantine Preferentially Blocks Extrasynaptic over Synaptic NMDA Receptor Currents in Hippocampal Autapses. Journal of Neuroscience, 30, 11246-11250.
https://doi.org/10.1523/JNEUROSCI.2488-10.2010
[62]  Briggs, R., Kennelly, S.P. and O’Neill, D. (2016) Drug Treatments in Alzheimer’s Disease. Clinical Medicine Journal, 16, 247-253.
https://doi.org/10.7861/clinmedicine.16-3-247
[63]  Mcshane, R., Westby, M.J., Roberts, E., et al. (2019) Memantine for Dementia. Cochrane Database of Systematic Reviews, 3, CD003154.
https://doi.org/10.1002/14651858.CD003154.pub6
[64]  宋美潓. 美金刚联合脑电磁治疗阿尔茨海默症伴痴呆行为精神症状的影响分析[J]. 中国冶金工业医学杂志, 2023, 40(6): 685-686.
[65]  Zuo, X., Dai, H., Zhang, H., et al. (2018) A Peptide-WS2 Nanosheet Based Biosensing Platform for Determination of β-Secretase and Screening of Its Inhibitors. Analyst, 143, 4585-4591.
https://doi.org/10.1039/C8AN00132D
[66]  Kumar, A., Tiwari, A. and Sharma, A. (2018) Changing Paradigm from One Target One Ligand towards Multi-Target Directed Ligand Design for Key Drug Targets of Alzheimer Disease: An Important Role of in Silico Methods in Multi-Target Directed Ligands Design. Current Neuropharmacology, 16, 726-739.
https://doi.org/10.2174/1570159X16666180315141643
[67]  Waller, E.S., Yardeny, B.J., Fong, W.Y., et al. (2022) Altered Peripheral Factors Affecting the Absorption, Distribution, Metabolism, and Excretion of Oral Medicines in Alzheimer’s Disease. Advanced Drug Delivery Reviews, 185, Article ID: 114282.
https://doi.org/10.1016/j.addr.2022.114282

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133