全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

工厂化循环水养殖消毒技术的研究进展
Research Progress on Disinfection Technology of the Factory-Based Recirculating Aquaculture

DOI: 10.12677/ojfr.2024.111005, PP. 38-48

Keywords: 工厂化循环水养殖,消毒技术,病害防控
Factory-Based Recirculating Aquaculture
, Disinfection Technology, Disease Prevention and Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

工厂化循环水养殖系统(RAS)是未来水产养殖的主要发展方向之一,系统环境菌群失衡、特定病原侵入等问题时有发生,因此病害防控已成为循环水养殖管理的重要技术环节之一。本文重点综述了国内外常用的RAS消毒方法和应用技术,从消毒方式、消毒效果等多个层面比较分析了各个消毒法的优缺点,以期为工厂化循环水养殖水处理工艺的优化和生物安保体系的构建提供参考。
Factory-based recirculating aquaculture system (RAS) is one of the main development directions of aquaculture in the future, and problems such as imbalance of system environmental flora and invasion of specific pathogens occur from time to time, so disease prevention and control has become one of the important technical aspects of recirculating aquaculture management. This paper focuses on the review of the commonly used RAS disinfection methods and application technologies at home and abroad, and compares and analyzes the advantages and disadvantages of each disinfection method from the disinfection method, disinfection effect and other levels, with a view to providing references for the optimization of the water treatment process of factory-based recirculating water aquaculture and the construction of the biosecurity system.

References

[1]  刘宝良, 雷霁霖, 黄滨, 等. 中国海水鱼类陆基工厂化养殖产业发展现状及展望[J]. 渔业现代化, 2015, 42(1): 1-5, 10.
[2]  王峰, 雷霁霖, 高淳仁, 等. 国内外工厂化循环水养殖模式水质处理研究进展[J]. 中国工程科学, 2013, 15(10): 16-23, 32.
[3]  谷雪勤. 鱼类循环水养殖系统中细菌群落结构研究进展[J]. 南方农业, 2022, 16(6): 200-202.
[4]  Rurangwa, E. and Verdegem, M.C.J. (2015) Microorganisms in Recirculating Aquaculture Systems and Their Management. Reviews in Aquaculture, 7, 117-130.
https://doi.org/10.1111/raq.12057
[5]  文尚胜, 左文财, 周悦, 等. 紫外线消毒技术的研究现状及发展趋势[J]. 光学技术, 2020, 46(6): 664-670.
[6]  肖茂华, 李亚杰, 汪小旵, 等. 水产养殖尾水处理技术与装备的研究进展[J]. 南京农业大学学报, 2023, 46(1): 1-13.
[7]  王涛. 中压紫外线技术——实现彻底杀菌[J]. 流程工业, 2011(4): 18-19.
[8]  Roy, P.F.Y. (2015) Fish Health Management Considerations in Recirculating Aquaculture Systems—Part 2: Pathogens 1. Institute of Food and Agricultural Sciences, University of Florida, Gainesville.
[9]  Liltved, H. (2002) Ozonation and UV-Irradiation. Recirculating Aquaculture Systems, NRAC Publication, 393-425.
[10]  Attramadal, K.J.K., ?ie, G., St?rseth, T.R., et al. (2012) The Effects of Moderate Ozonation or High Intensity UV-Irradiation on the Microbial Environment in RAS for Marine Larvae. Aquaculture, 330-333, 121-129.
https://doi.org/10.1016/j.aquaculture.2011.11.042
[11]  宋昌斌, 郭亚楠, 闫建昌, 等. 紫外发光二极管在水产养殖杀菌消毒中的应用与展望[J]. 渔业现代化, 2021, 48(1): 1-8.
[12]  Chevremont, A.C., Farnet, A.M., Coulomb, B., et al. (2012) Effect of Coupled UV-A and UV-C LEDs on both Microbiological and Chemical Pollution of Urban Wastewaters. Science of the Total Environment, 426, 304-310.
https://doi.org/10.1016/j.scitotenv.2012.03.043
[13]  Beck, S.E., Ryu, H., Boczek, L.A., et al. (2017) Evaluating UV-C LED Disinfection Performance and Investigating Potential Dual-Wavelength Synergy. Water Research, 109, 207-216.
https://doi.org/10.1016/j.watres.2016.11.024
[14]  Oguma, K., Kita, R., Sakai, H., et al. (2013) Application of UV Light Emitting Diodes to Batch and Flow-Through Water Disinfection Systems. Desalination, 328, 24-30.
https://doi.org/10.1016/j.desal.2013.08.014
[15]  钟丽琼. 超声波在水处理中的应用研究进展[J]. 广东化工, 2010, 37(7): 202-203, 208.
[16]  周红, 生许小芳, 王欢, 等. 超声波灭菌技术的研究进展[J]. 声学技术, 2010, 29(5): 498-502.
[17]  Doosti, M.R., Kargar, R. and Sayadi, M.H. (2012) Water Treatment Using Ultrasonic Assistance: A Review. Proceedings of the International Academy of Ecology and Environmental Sciences, 2, 96-110.
[18]  Nam Koong, H. (2020) Water Treatment in Recirculating Aquaculture Systems (RAS) by Ultrasonically Induced Cavitation. Master’s Thesis, Christian-Albrechts-Universit?t Zu Kiel, Kiel.
[19]  Svendsen, E., Dahle, S.W., Hagemann, A., et al. (2018) Effect of Ultrasonic Cavitation on Small and Large Organisms for Water Disinfection during Fish Transport. Aquaculture Research, 49, 1166-1175.
https://doi.org/10.1111/are.13567
[20]  Nam-Koong, H., Schroeder, J.P., Petrick, G. and Schulz, C. (2020) Preliminary Test of Ultrasonically Disinfection Efficacy towards Selected Aquaculture Pathogens. Aquaculture, 515, Article ID: 734592.
https://doi.org/10.1016/j.aquaculture.2019.734592
[21]  Lakeh, A.A.B., Kloas, W., Jung, R., et al. (2013) Low Frequency Ultrasound and UV-C for Elimination of Pathogens in Recirculating Aquaculture Systems. Ultrasonics Sonochemistry, 20, 1211-1216.
https://doi.org/10.1016/j.ultsonch.2013.01.008
[22]  Sassi, J., Viitasalo, S., Rytkonen, J., et al. (2005) Experiments with Ultraviolet Light, Ultrasound and Ozone Technologies for Onboard Ballast Water Treatment. Valtion Teknillinen Tutkimuskeskus, 2313, 1-86.
[23]  Wolber, J.E. and Pietrock, M. (2004) Ultrasonic Water Treatment as an Alternative Means of Controlling Fish Mortality Caused by Bucephalus Polymorphus Cercariae. European Association of Fish Pathologists, 24, 153-160.
[24]  Lakeh, A.A.B. (2015) Effect of Low Frequency Ultrasound and Ultraviolet-C Light for Water Disinfection in Recirculating Aquaculture Systems.
https://doi.org/10.18452/17146
[25]  Liu, L., Wang, N., Laghari, A.A., et al. (2023) A Review and Perspective of Environmental Disinfection Technology Based on Microwave Irradiation. Current Pollution Reports, 9, 46-59.
https://doi.org/10.1007/s40726-022-00247-2
[26]  李鲁晶, 郭文, 景福涛, 等. 全封闭工厂化循环水微波消毒养殖系统的组成及运行[J]. 齐鲁渔业, 2010, 27(7): 26-30.
[27]  李鲁晶, 郭文, 简玉霞, 等. 基于微波消毒的工厂化养殖设施的贝类净化试验[J]. 齐鲁渔业, 2012, 29(3): 11-14.
[28]  Musee, N., Ngwenya, P., Motaung, L.K., et al. (2023) Occurrence, Effects, and Ecological Risks of Chemicals in Sanitizers and Disinfectants: A Review. Environmental Chemistry and Ecotoxicology, 5, 62-78.
https://doi.org/10.1016/j.enceco.2023.01.003
[29]  Pedersen, L.F., Pedersen, P.B., Nielsen, J.L. and Nielsen, P.H. (2009) Peracetic Acid Degradation and Effects on Nitrification in Recirculating Aquaculture Systems. Aquaculture, 296, 246-254.
https://doi.org/10.1016/j.aquaculture.2009.08.021
[30]  Davidson, J., Summerfelt, S., Straus, D.L., et al. (2019) Evaluating the Effects of Prolonged Peracetic Acid Dosing on Water Quality and Rainbow Trout Oncorhynchus mykiss Performance in Recirculation Aquaculture Systems. Aquacultural Engineering, 84, 117-127.
https://doi.org/10.1016/j.aquaeng.2018.12.009
[31]  Pedersen, L.F., Pedersen, P.B., Nielsen, J.L. and Nielsen, P.H. (2010) Long Term/Low Dose Formalin Exposure to Small-Scale Recirculation Aquaculture Systems. Aquacultural Engineering, 42, 1-7.
https://doi.org/10.1016/j.aquaeng.2009.08.002
[32]  Heinen, J.M., Weber, A.L., Noble, A.C. and Morton, J.D. (1995) Tolerance to Formalin by a Fluidized-Bed Biofilter and Rainbow Trout Oncorhynchus mykiss in a Recirculating Culture System. Journal of the World Aquaculture Society, 26, 65-71.
https://doi.org/10.1111/j.1749-7345.1995.tb00210.x
[33]  Liu, D., Straus, D.L., Pedersen, L.F. and Meinelt, T. (2018) Periodic Bacterial Control with Peracetic Acid in a Recirculating Aquaculture System and Its Long-Term Beneficial Effect on Fish Health. Aquaculture, 485, 154-159.
https://doi.org/10.1016/j.aquaculture.2017.11.050
[34]  Suurn?kki, S., Pulkkinen, J.T., Lindholm-Lehto, P.C., et al. (2020) The Effect of Peracetic Acid on Microbial Community, Water Quality, Nitrification and Rainbow Trout (Oncorhynchus mykiss) Performance in Recirculating Aquaculture Systems. Aquaculture, 516, Article ID: 734534.
https://doi.org/10.1016/j.aquaculture.2019.734534
[35]  B?gner, D., B?gner, M., Schmachtl, F., et al. (2021) Hydrogen Peroxide Oxygenation and Disinfection Capacity in Recirculating Aquaculture Systems. Aquacultural Engineering, 92, Article ID: 102140.
https://doi.org/10.1016/j.aquaeng.2020.102140
[36]  周煊亦, 房燕, 曹广斌, 等. 臭氧处理技术在工厂化水产养殖中的应用研究[J]. 水产学杂志, 2012, 25(1): 49-57.
[37]  Powell, A. and Scolding, J.W.S. (2018) Direct Application of Ozone in Aquaculture Systems. Reviews in Aquaculture, 10, 424-438.
https://doi.org/10.1111/raq.12169
[38]  周烜亦, 蒋树义, 韩世成, 等. 工厂化水产养殖臭氧氧化氨氮过程中臭氧残留的安全性[J]. 江苏农业科学, 2012, 40(7): 222-224.
[39]  Janssen, C., Simone, D. and Guinet, M. (2011) Preparation and Accurate Measurement of Pure Ozone. Review of Scientific Instruments, 82, Article ID: 034102.
https://doi.org/10.1063/1.3557512
[40]  胡珊, 毛澍洲, 邱光宇, 等. 应用于臭氧消毒系统的新型静态混合器结构设计[J]. 环境工程学报, 2020, 14(11): 3201-3207.
[41]  曹广斌, 贾惠文, 蒋树义, 等. 循环水养鱼系统中臭氧射流混合设备设计与性能测试[J]. 农业工程学报, 2011, 27(10): 73-78.
[42]  曹广斌, 程启云, 韩世成, 等. 应用于冷水鱼养殖的臭氧-氨氮反应塔设计及试验[J]. 大连海洋大学学报, 2014(4): 403-408.
[43]  刘鹏, 倪琦, 管崇武, 等. 水产养殖中多层式臭氧混合装置效率研究[J]. 广东农业科学, 2014, 41(10): 115-119, 131.
[44]  Wedemeyer, G.A., Nelson, N.C. and Yasutake, W.T. (1979) Physiological and Biochemical Aspects of Ozone Toxicity to Rainbow Trout (Salmo Gairdneri). Journal of the Fisheries Board of Canada, 36, 605-614.
https://doi.org/10.1139/f79-088
[45]  韩世成, 戚翠战, 曹广斌, 等. 臭氧消毒杀菌技术在工厂化水产养殖中的应用[J]. 水产学杂志, 2015, 28(6): 44-52.
[46]  戚翠战, 韩世成, 曹广斌, 等. 鱼类循环水养殖水处理中的臭氧浓度PID控制[J]. 渔业现代化, 2014, 41(2): 18-22.
[47]  刘鹏. 循环水养殖系统中臭氧高效混合装置与在线监控技术研究[D]: [硕士学位论文]. 上海: 上海海洋大学, 2014.
[48]  Robson, C.M. (1982) Design Engineering Aspects of Ozonation Systems. In: Rice, R.G., Ed., Handbook of Ozone Technology and Applications, Butterworth Publishers, Oxford, 1.
[49]  Cryer, E. (1992) Recent Applications of Ozone in Freshwater Fish Hatchery Systems. Proceedings of the Third International Symposium on the Use of Ozone in Aquatic Systems, Stamford, 8-11 September 1992, 134-154.
[50]  Hunter, G.L., O’BRIEN, W.J., Hulsey, R.A., et al. (1998) Emerging Disinfection Technologies: Medium-Pressure Ultraviolet Lamps and Other Systems Are Considered for Wastewater Application. Water Environment & Technology, 10, 40-44.
[51]  管崇武, 杨菁, 单建军, 等. 工厂化循环水养殖中臭氧/紫外线反应系统的水处理性能[J]. 农业工程学报, 2014(23): 253-259.
[52]  Sharrer, M.J. and Summerfelt, S.T. (2007) Ozonation Followed by Ultraviolet Irradiation Provides Effective Bacteria Inactivation in a Freshwater Recirculating System. Aquacultural Engineering, 37, 180-191.
https://doi.org/10.1016/j.aquaeng.2007.05.001
[53]  Moreno-Andres, J., Rueda-Marquez, J.J., Homola, T., et al. (2020) A Comparison of Photolytic, Photochemical and Photocatalytic Processes for Disinfection of Recirculation Aquaculture Systems (RAS) Streams. Water Research, 181, Article ID: 115928.
https://doi.org/10.1016/j.watres.2020.115928
[54]  Villar-Navarro, E., Levchuk, I., Rueda-Márquez, J.J., et al. (2021) Inactivation of Simulated Aquaculture Stream Bacteria at Low Temperature Using Advanced UVA-and Solar-Based Oxidation Methods. Solar Energy, 227, 477-489.
https://doi.org/10.1016/j.solener.2021.09.029
[55]  Qi, W., Zhu, S., Shitu, A., et al. (2020) Low Concentration Peroxymonosulfate and UVA-LED Combination for E. Coli Inactivation and Wastewater Disinfection from Recirculating Aquaculture Systems. Journal of Water Process Engineering, 36, Article ID: 101362.
https://doi.org/10.1016/j.jwpe.2020.101362
[56]  Wang, W., Huang, G., Jimmy, C.Y. and Wong, P.K. (2015) Advances in Photocatalytic Disinfection of Bacteria: Development of Photocatalysts and Mechanisms. Journal of Environmental Sciences, 34, 232-247.
https://doi.org/10.1016/j.jes.2015.05.003
[57]  Gamage, J. and Zhang, Z. (2010) Applications of Photocatalytic Disinfection. International Journal of Photoenergy, 2010, Article ID: 764870.
https://doi.org/10.1155/2010/764870
[58]  Malato, S., Fernández-Ibá?ez, P., Maldonado, M.I., et al. (2009) Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview and Trends. Catalysis Today, 147, 1-59.
https://doi.org/10.1016/j.cattod.2009.06.018
[59]  吴斌, 张华一, 吴垠, 等. TiO2紫外复合消毒机在零污水排放的工厂化养殖系统中杀菌效果研究[J]. 水产科学, 2009, 28(6): 317-320.
[60]  Rodriguez-Gonzalez, L., Pettit, S.L., Zhao, W., et al. (2019) Oxidation of off Flavor Compounds in Recirculating Aquaculture Systems Using UV-TiO2 Photocatalysis. Aquaculture, 502, 32-39.
https://doi.org/10.1016/j.aquaculture.2018.12.022
[61]  Song, K.S., Yu, X.C., Hu, D.D., et al. (2013) Photocatalytic Degradation of Ammonia Nitrogen in Aquaculture Wastewater by Using Nano-ZnO. Advanced Materials Research, 610, 564-568.
https://doi.org/10.4028/www.scientific.net/AMR.610-613.564
[62]  张珈瑜, 杨诗林, 崔崇威, 邱珊, 邓凤霞. 电化学消毒技术研究进展[J]. 武汉工程大学学报, 2021, 43(5): 473-480, 495.
[63]  Bergmann, H. (2021) Electrochemical Disinfection-State of the Art and Tendencies. Current Opinion in Electrochemistry, 28, Article ID: 100694.
https://doi.org/10.1016/j.coelec.2021.100694
[64]  Bergmann, M.E.H. and Koparal, A.S. (2005) Studies on Electrochemical Disinfectant Production Using Anodes Containing RuO2. Journal of Applied Electrochemistry, 35, 1321-1329.
https://doi.org/10.1007/s10800-005-9064-0
[65]  Ding, J., Zhao, Q., Zhang, Y., et al. (2015) The EAND Process: Enabling Simultaneous Nitrogen-Removal and Disinfection for WWTP Effluent. Water Research, 74, 122-131.
https://doi.org/10.1016/j.watres.2015.02.005
[66]  Jeong, J., Kim, C. and Yoon, J. (2009) The Effect of Electrode Material on the Generation of Oxidants and Microbial Inactivation in the Electrochemical Disinfection Processes. Water Research, 43, 895-901.
https://doi.org/10.1016/j.watres.2008.11.033
[67]  Ruan, Y., Lu, C., Guo, X., et al. (2016) Electrochemical Treatment of Recirculating Aquaculture Wastewater Using a Ti/RuO2-IrO2 Anode for Synergetic Total Ammonia Nitrogen and Nitrite Removal and Disinfection. Transactions of the Asabe, 59, 1831-1840.
https://doi.org/10.13031/trans.59.11630
[68]  Xing, Y.Q. and Lin, J.W. (2011) Application of Electrochemical Treatment for the Effluent from Marine Recirculating Aquaculture Systems. Procedia Environmental Sciences, 10, 2329-2335.
https://doi.org/10.1016/j.proenv.2011.09.363
[69]  Kropp, R., Summerfelt, S.T., Woolever, K., et al. (2022) A Novel Advanced Oxidation Process (AOP) That Rapidly Removes Geosmin and 2-Methylisoborneol (MIB) from Water and Significantly Reduces Depuration Times in Atlantic Salmon Salmo Salar RAS Aquaculture. Aquacultural Engineering, 97, Article ID: 102240.
https://doi.org/10.1016/j.aquaeng.2022.102240
[70]  Lindholm-Lehto, P.C., Vielma, J., Pakkanen, H. and Alén, R. (2019) Depuration of Geosmin-and 2-Methylisoborneol-Induced Off-Flavors in Recirculating Aquaculture System (RAS) Farmed European Whitefish Coregonus lavaretus. Journal of Food Science and Technology, 56, 4585-4594.
https://doi.org/10.1007/s13197-019-03910-7
[71]  Mook, W.T., Chakrabarti, M.H., Aroua, M.K., et al. (2012) Removal of Total Ammonia Nitrogen (TAN), Nitrate and Total Organic Carbon (TOC) from Aquaculture Wastewater Using Electrochemical Technology: A Review. Desalination, 285, 1-13.
https://doi.org/10.1016/j.desal.2011.09.029
[72]  Lahav, O., Asher, R.B. and Gendel, Y. (2015) Potential Applications of Indirect Electrochemical Ammonia Oxidation within the Operation of Freshwater and Saline-Water Recirculating Aquaculture Systems. Aquacultural Engineering, 65, 55-64.
https://doi.org/10.1016/j.aquaeng.2014.10.009

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413