全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结构力学国内外发展
Structural Mechanics Development at Home and Abroad

DOI: 10.12677/isl.2024.81008, PP. 55-65

Keywords: 结构力学,时间追叙述法,国内外发展历史
Structural Mechanics
, Time Chasing Narration, Development History at Home and Abroad

Full-Text   Cite this paper   Add to My Lib

Abstract:

结构力学在工程设计和物理学中有不可取代的地位,结构力学可以应用到桥梁、建筑、航天航空等大型的工程中,也在纳米结构、细胞构造等微型仪器上有应用,因此对结构力学的研究至关重要。想要对结构力学的研究有所突破,那么对结构力学的发展的研究就是必不可少的。本文查询了之前的与结构力学有关的资料和文献,综述了几篇论文,并且将结构力学的发展进行了分类归纳和按照时间顺序进行了总结,得到了结构力学的大致发展史,并且发现了结构力学和其他物理分支,比如能量、力法、位移法之间发展的关系。
Structural mechanics plays an irreplaceable role in engineering design and physics. Structural mechanics can be applied to bridges, buildings, aerospace and other large-scale projects, as well as micro-instruments such as nanostructures and cell structures. Therefore, the study of structural mechanics is of great importance. In order to make a breakthrough in the study of structural mechanics, it is necessary to study the development of structural mechanics. In this paper, the previous materials and literature related to structural mechanics were inquired, several papers were reviewed, and the development of structural mechanics was classified and summarized in chronological order. The general development history of structural mechanics was obtained, and the relationship between structural mechanics and other branches of physics, such as energy, force method and displacement method, was found.

References

[1]  Zhou, X. and Wang, X. (2018) A Large-Scale Test Method for Mechanical Response of Pavement Structure. Advances in Materials Science and Engineering, 2018, Article ID: 2642409.
https://doi.org/10.1155/2018/2642409
[2]  Faluweki, M.K. and Goehring, L. (2022) Supplementary Material from “Structural Mechanics of Filamentous Cyanobacteria”. The Royal Society Collection.
[3]  Farajpour, A., Ghayesh, M.H. and Farokhi, H. (2018) A Review on the Mechanics of Nanostructures. International Journal of Engineering Science, 133, 231-263.
https://doi.org/10.1016/j.ijengsci.2018.09.006
[4]  Patekar, V. and Kale, K. (2022) State of the Art Review on Mechanical Properties of Sandwich Composite Structures. Polymer Composites, 43, 5820-5830.
https://doi.org/10.1002/pc.26989
[5]  Weitao, L., Li, D. and Dong, L. (2020) Study on Mechanical Properties of a Hierarchical Octet-Truss Structure. Composite Structures, 249, Article ID: 112640.
https://doi.org/10.1016/j.compstruct.2020.112640
[6]  郭突玲, 沈慧君. 物理学史[M]. 北京: 清华大学出版社, 1993.
[7]  武际可. 力学史[M]. 重庆: 重庆出版社, 2000.
[8]  Reissner, E. (1950) On a Variational Theorem in Elasticity. Journal of Mathematical Physics, 29, 90-95.
https://doi.org/10.1002/sapm195029190
[9]  Hibbeler, R.C. (1997) Structural Analysis. 3rd Edition, Prentice-Hall, Inc., Upper Saddle River.
[10]  Samuelsson, A. and Zienkiewicz, O.C. (2006) History of the Stiffness Method. International Journal for Numerical Methods in Engineering, 67, 149-157.
https://doi.org/10.1002/nme.1510
[11]  钱令希. 余能理论[J]. 中国科学, 1950, 1(2-4): 449-456.
[12]  胡海昌. 论弹性体力学和受范性体力学中的一般变分原理[J]. 物理学报, 1954, 10(3): 259-290.
[13]  冯康. 基于变分原理的差分格式[J]. 应用数学和计算数学, 1965, 2(4): 237-261.
[14]  Besseling, J.F. (1963) The Com, Petites Analogy between the Matrix Equations and Continuous Field Equations of Structural Analysis. International Symposium on Analogue and Digital Techniques Applied to Aeronautics, Liege, 223-242.
[15]  李正良. 结构力学的前世今生[J]. 大学科普, 2012, 6(3): 30-31.
[16]  杨迪雄. 结构力学发展的早期历史和启示[J]. 力学与实践, 2007, 29(6): 85-86.
[17]  Fantoli, A. (2011) Two New, Remarkable Galileo Biographies. History: Reviews of New Books, 39, 99-103.
https://doi.org/10.1080/03612759.2011.598493
[18]  Aquilini, E., Cosentino, U., Pasqualetti, N. and Signori, F. (2021) Julius Robert Mayer and the Principle of Energy Conservation. ChemTexts, 7, Article No. 22.
https://doi.org/10.1007/s40828-021-00147-w
[19]  Cheng, C.-A. and Huang, H.-P. (2016) Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems. IEEE Transactions on Cybernetics, 46, 3247-3258.
https://doi.org/10.1109/TCYB.2015.2501842
[20]  Bravetti, A., Cruz, H. and Tapias, D. (2017) Contact Hamiltonian Mechanics. Annals of Physics, 376, 17-39.
https://doi.org/10.1016/j.aop.2016.11.003
[21]  Chen, K.-D., Liu, J.-P., Chen, J.-Q., Zhong, X.-Y., Mikkola, A., Lu, Q.-H. and Ren, G.-X. (2019) Equivalence of Lagrange’s Equations for Non-Material Volume and the Principle of Virtual Work in ALE Formulation. Acta Mechanica, 231, 1141-1157.
https://doi.org/10.1007/s00707-019-02576-8
[22]  Collins, D., Hamati, R.J., Candelier, F., Gustavsson, K., Mehlig, B. and Voth, G.A. (2021) Lord Kelvin’s Isotropic Helicoid. Physical Review Fluids, 6, Article ID: 074302.
https://doi.org/10.1103/PhysRevFluids.6.074302
[23]  Romero, I. (2017) A Generalization of Castigliano’s Theorems for Structures with Eigenstrains. Archive of Applied Mechanics, 87, 1727-1737.
https://doi.org/10.1007/s00419-017-1282-5
[24]  Timoshenko, S.P. and Young, D.H. (1965) Structural Theory. 2nd Edition, McGraw Inc., New York. (中译本: Timoshenko, S.P. and Young, D.H. 结构理论[M]. 第2版. 叶红玲, 杨庆生, 译. 北京: 机械工业出版社, 2005)
[25]  Argyris, J.H. 能量原理和结构分析[M]. 郁成勋, 译. 北京: 科学出版社, 1978.
[26]  Davydov, R. (2022) Nuclear and New Energy Technology. Energies, 15, Article No. 6046.
https://doi.org/10.1038/068193a0
[27]  Shepelin, N.A., Glushenkov, A.M., Lussini, V.C., et al. (2019) New Developments in Composites, Copolymer Technologies and Processing Techniques for Flexible Fluoropolymer Piezoelectric Generators for Efficient Energy Harvesting. Energy & Environmental Science, 12, 1143-1176.
https://doi.org/10.1039/C8EE03006E
[28]  R?pke, M., Saura, P., Riepl, D., P?verlein, M.C. and Kaila, V.R.I. (2020) Functional Water Wires Catalyze Long-Range Proton Pumping in the Mammalian Respiratory Complex I. Journal of the American Chemical Society, 142, 21758-21766.
https://doi.org/10.1021/jacs.0c09209
[29]  Li, W., Chen, S. and Huang, H. (2023) System Reduction-Based Approximate Reanalysis Method for Statically Indeterminate Structures with High-Rank Modification. Structures, 55, 1423-1436.
https://doi.org/10.1016/j.istruc.2023.06.063
[30]  Yao, W. and Ye, Z.D. (2004) Internal Force Analysis Due to the Supporting Translation in Statically Indeterminate Structures for Different Elastic Modulus. Journal of Shanghai University (English Edition), 8, 274-280.
https://doi.org/10.1007/s11741-004-0063-x
[31]  Rosales, C. and Lim, K.M. (2005) Numerical Comparison between Maxwell Stress Method and Equivalent Multipole Approach for Calculation of the Dielectrophoretic Force in Single-Cell Traps. Electrophoresis, 26, 2057-2065.
https://doi.org/10.1002/elps.200410298
[32]  Charlton, T.M. (1980) The Principle of Virtual Work in Relation to Müller-Breslau’s Principle. International Journal of Mechanical Sciences, 22, 523-525.
https://doi.org/10.1016/0020-7403(80)90006-5
[33]  Shen, W. (1992) The Generalized Müller-Breslau Principle for Higher-Order Elements. Computers & Structures, 44, 207-212.
https://doi.org/10.1016/0045-7949(92)90239-V
[34]  Müller, P.C., Pfeiffer, F. and Schiehlen, W. (2012) Kurt Magnus: Commemorating His 100th Birthday. Archive of Applied Mechanics, 82, 1705-1708.
https://doi.org/10.1007/s00419-012-0710-9
[35]  Huedo, J.I.D., Martínez, J.M. and Montero, P.G. (2005) Dimensioning of Longitudinal Reinforcements in Concrete Beams with a Non-Rectangular Section and Variable Height. Spanish Journal of Agricultural Research, 3, 367-376.
https://doi.org/10.5424/sjar/2005034-163
[36]  Miller, P.R. and Sarin, R.K. (1971) Modification Techniques in the Matrix Force Method. The Aeronautical Journal, 75, 126-128.
https://doi.org/10.1017/S0001924000044870
[37]  Boucard, J. (2013) Cyclotomie et formes quadratiques dans l’?uvre arithmétique d’Augustin-Louis Cauchy (1829-1840). Archive for History of Exact Sciences, 67, 349-414.
https://doi.org/10.1007/s00407-013-0115-3
[38]  Shampo, M.A. and Kyle, R.A. (1982) Leonhard Euler. JAMA, 248, 1072-1072.
https://doi.org/10.1001/jama.248.9.1072
[39]  Koohestani, K. (2018) Structural Reanalysis via Force Method. International Journal of Solids and Structures, 136-137, 103-111.
https://doi.org/10.1016/j.ijsolstr.2017.12.008
[40]  Rezaiee-Pajand, M. and Gharaei-Moghaddam, N. (2017) Frame Nonlinear Analysis by Force Method. International Journal of Steel Structures, 17, 609-629.
https://doi.org/10.1007/s13296-017-6019-3
[41]  Long, H., Liu, Y., Huang, C., Wu, W. and Li, Z. (2019) Modelling a Cracked Beam Structure Using the Finite Element Displacement Method. Shock and Vibration, 2019, Article ID: 7302057.
https://doi.org/10.1155/2019/7302057
[42]  Zhou, W., Zhao, Y., Yuan, H. and Wang, X. (2023) Study of the Hull Structural Deformation Calculation Using the Matrix Displacement Method and Its Influence on the Shaft Alignment. Journal of Marine Science and Engineering, 11, Article No. 1495.
https://doi.org/10.3390/jmse11081495
[43]  Mavriplis, C. (1994) Adaptive Mesh Strategies for the Spectral Element Method. Computer Methods in Applied Mechanics and Engineering, 116, 77-86.
https://doi.org/10.1016/S0045-7825(94)80010-3
[44]  Hafeez, M.B. and Krawczuk, M. (2023) A Review: Applications of the Spectral Finite Element Method. Archives of Computational Methods in Engineering, 30, 3453-3465.
https://doi.org/10.1007/s11831-023-09911-2
[45]  Clough, R.W. (2001) Thoughts about the Origin of the Finite Element Method. Computers and Structures, 79, 2029-2030.
https://doi.org/10.1016/S0045-7949(01)00123-7
[46]  Cough, R.W. (2004) Early History of the Finite Element Method from the Viewpoint of a Pioneer. International Journal for Numerical Methods in Engineering, 60, 283-287.
https://doi.org/10.1002/nme.962
[47]  Clough, R.W. (1960) The Finite Element Method in Plane Stress Analysis. Proceedings of 2nd ASCE Conference of Electron Computation, Pittsburg, 8-9 September 1960, 8.
[48]  Jones, R.E. (1964) A Generalization of the Direct Stiffness Method of Structural Analysis. AIAA Journal, 2, 821-826.
https://doi.org/10.2514/3.2437
[49]  Wilson, E.L. (1993) Automation of the Finite Element Method—A Personal Historical View. Finite Elements in Analysis and Design, 13, 91-104.
https://doi.org/10.1016/0168-874X(93)90049-V
[50]  Melosh, R.J. (1963) Basis for the Derivation of Matrices for the Direct Stiffness Method. AIAA Journal, 1, 1631-1637.
https://doi.org/10.2514/3.1869
[51]  Li, J., Shang, D., Liu, J., et al. (2019) Sound Scattering from Targets in Shallow Water by Finite Element Method Combined with Normal-Mode Method. The Journal of the Acoustical Society of America, 145, 1692-1692.
https://doi.org/10.1121/1.5101207
[52]  Okubo, K., Rougier, E., Lei, Z., et al. (2020) Modeling Earthquakes with Off-Fault Damage Using the Combined Finite-Discrete Element Method. Computational Particle Mechanics, 7, 1057-1072.
https://doi.org/10.1007/s40571-020-00335-4
[53]  Goel, V.K. and Nyman, E. (2016) Computational Modeling and Finite Element Analysis. Spine, 41, S6-S7.
https://doi.org/10.1097/BRS.0000000000001421
[54]  Dodig, H., Poljak, D. and Cvetkovi?, M. (2021) On the Edge Element Boundary Element Method/Finite Element Method Coupling for Time Harmonic Electromagnetic Scattering Problems. International Journal for Numerical Methods in Engineering, 122, 3613-3652.
https://doi.org/10.1002/nme.6675
[55]  Khaniki, H.B. and Ghayesh, M.H. (2020) A Review on the Mechanics of Carbon Nanotube Strengthened Deformable Structures. Engineering Structures, 220, Article ID: 110711.
https://doi.org/10.1016/j.engstruct.2020.110711
[56]  Chandra, P. and Das, R. (2023) Finite-Element-Based Machine-Learning Algorithm for Studying Gyrotactic-Nanofluid Flow via Stretching Surface. International Journal for Numerical Methods in Fluids, 95, 1888-1912.
https://doi.org/10.1002/fld.5229
[57]  Muhammad, N., Zaman, F.D. and Mustafa, M.T. (2022) OpenFOAM for Computational Combustion Dynamics. The European Physical Journal Special Topics, 231, 2821-2835.
https://doi.org/10.1140/epjs/s11734-022-00606-6
[58]  Park, Y.-S., Kim, S., Kim, N. and Lee, J.-J. (2018) Evaluation of Bridge Support Condition Using Bridge Responses. Structural Health Monitoring, 18, 767-777.
https://doi.org/10.1177/1475921718773672
[59]  Quan, Y., Chen, J. and Gu, M. (2020) Aerodynamic Interference Effects of a Proposed Taller High-Rise Building on Wind Pressures on Existing Tall Buildings. The Structural Design of Tall and Special Buildings, 29, E1703.
https://doi.org/10.1002/tal.1703
[60]  Fang, Q., Wang, G., Du, J., et al. (2023) Prediction of Tunnelling Induced Ground Movement in Clay Using Principle of Minimum Total Potential Energy. Tunnelling and Underground Space Technology, 131, Article ID: 104854.
https://doi.org/10.1016/j.tust.2022.104854
[61]  Faluweki, M.K. and Goehring, L. (2022) Structural Mechanics of Filamentous Cyanobacteria. Journal of the Royal Society Interface, 19, Article ID: 20220268.
https://doi.org/10.1098/rsif.2022.0268
[62]  潘毅, 包韵雷, 刘永鑫, 等. 基于中国规范的近断层区竖向抗震设计谱研究[J]. 工程力学, 2021, 38(12): 183-190.
[63]  毛帮笑, 夏细胜, 王大奎, 等. 烧结温度对SiO_(2f)/SiO_2陶瓷基复合材料的微观结构和力学性能的影响[J/OL]. 陶瓷学报, 2024(1): 125-132.
https://doi.org/10.13957/j.cnki.tcxb.2024.01.012
[64]  Gao, W. (2018) Integrated Intelligent Method for Displacement Prediction in Underground Engineering. Neural Processing Letters, 47, 1055-1075.
https://doi.org/10.1007/s11063-017-9685-4
[65]  Yang, C., Wang, C. and Cheng, Z. (2022) Editorial for the Special Issue “Nanoscale Ferroic Materials—Ferroelectric, Piezoelectric, Magnetic, and Multiferroic Materials”. Nanomaterials, 12, Article No. 2951.
https://doi.org/10.3390/nano12172951
[66]  Lu, W., Thouless, M.D., Hu, Z., Wang, H., Ghelichi, R., Wu, C.-H. and Parks, D. (2016) CASL Structural Mechanics Modeling of Grid-To-Rod Fretting (GTRF). JOM, 68, 2922-2929.
https://doi.org/10.1007/s11837-016-2095-7

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133