全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Thermal Performance Analysis of Plaster Reinforced with Raffia Vinifera Particles for Use as Insulating Materials in Building

DOI: 10.4236/jmmce.2024.122009, PP. 112-138

Keywords: Fibres, Plaster, Thermal Test, Mechanical Test, Insulating Material, Indoor Comfort

Full-Text   Cite this paper   Add to My Lib

Abstract:

The present study focuses on the formulation of new composite consisting of plaster and raffia vinifera particle (RVP) with the purpose to reducing energy consumption. The aim of this study is to test this new compound as an insulating eco-material in building in a tropical climate. The composites samples were developed by mixing plaster with raffia vinifera particles (RVP) using three different sizes (1.6 mm, 2.5 mm and 4 mm). The effects of four different RVP incorporations rates (i.e., 0wt%, 5wt%; 10wt%; 15wt%) on physical, thermal, mechanicals properties of the composites were investigated. In addition, the use of the raffia vinifera particles and plaster based composite material as building envelopes thermal insulation material is studied by the habitable cell thermal behavior instrumentation. The results indicate that the incorporation of raffia vinifera particle leads to improve the new composite physical, mechanical and thermal properties. And the parametric analysis reveals that the sampling rate and the size of raffia vinifera particles are the most decisive factor to impact these properties, and to decreases in the thermal conductivity which leads to an improvement to the thermal resistance and energy savings. The best improvement of plaster composite was obtained at the raffia vinifera particles size between 2.5 and 4.0 mm loading of 5wt% (C95P5R) with a good ratio of thermo-physical-mechanical properties. Additionally, the habitable cell experimental thermal behavior, with the new raffia vinifera particles and plaster-based composite as thermal insulating material for building walls, gives an average damping of 4°C and 5.8°C in the insulated house interior environment respectively for cold and hot cases compared to the outside environment and the uninsulated house interior environment. The current study highlights that this mixture gives the new composite thermal insulation properties applicable in the eco-construction of habitats in tropical environments.

References

[1]  Kumar, D., Alam, M., Memon, R.A. and Bhayo, B.A. (2022) A Critical Review for Formulation and Conceptualization of an Ideal Building Envelope and Novel Sustainability Framework for Building Applications. Cleaner Engineering and Technology, 11, Article ID: 100555.
https://doi.org/10.1016/j.clet.2022.100555
[2]  UNEP (2020) Global Status Report for Buildings and Construction. Nairobi.
[3]  Losini, E.A., Grillet, A.-C., Woloszyn, M., Lavrik, L., Moletti, C., Dotelli, G. and Caruso, M. (2022) Mechanical and Microstructural Characterization of Rammed Earth Stabilized with Five Biopolymers. Materials, 15, Article No. 3136.
https://doi.org/10.3390/ma15093136
[4]  Ali, M., Almuzaiqer, R., Al-Salem, K., Alabdulkarem, A. and Nuhait, A. (2021) New Novel Thermal Insulation and Sound-Absorbing Materials from Discarded Facemasks of COVID-19 Pandemic. Scientific Reports, 11, Article No. 23240.
https://doi.org/10.1038/s41598-021-02744-8
[5]  Al-Salem, K., Ali, M., Almuzaiqer, R., Al-Suhaibani, Z. and Nuhait, A. (2023) Recycling Discarded Facemasks of COVID-19 Pandemic to New Novel Composite Thermal Insulation and Sound-Absorbing Materials. Sustainability, 15, Article No. 1475.
https://doi.org/10.3390/su15021475
[6]  Neri, M. (2022) Thermal and Acoustic Characterization of Innovative and Unconventional Panels Made of Reused Materials. Atmosphere, 13, Article No. 1825.
https://doi.org/10.3390/atmos13111825
[7]  Jedidi, M. and Abroug, A. (2020) Valorization of Posidonia oceanica Balls for the Manufacture of an Insulating and Ecological Material. Jordan Journal of Civil Engineering, 14, 417-430.
[8]  Ali, M., Alabdulkarem, A., Nuhait, A., Al-Salem, K., Almuzaiqer, R., Bayaquob, O., Salah, H., Alsaggaf, A. and Algafri, Z. (2020) Thermal Analyses of Loose Agave, Wheat Straw Fibers and Agave/Wheat Straw as New Hybrid Thermal Insulating Materials for Buildings. Journal of Natural Fibers, 18, 2173-2188.
https://doi.org/10.1080/15440478.2020.1724232
[9]  Ali, M. (2016) Microstructure, Thermal Analysis and Acoustic Characteristics of Calotropis procera (Apple of Sodom) Fibers. Journal of Naturla Fibers, 13, 343-352.
https://doi.org/10.1080/15440478.2015.1029198
[10]  Malbila, E., Delvoie, S., Toguyeni, D. and Courard, L. (2021) Improving the Building Energy Efficiency and Thermal Comfort through the Design of Walls in Compressed Earth Blocks of Agricultural and Biopolymer Residues Masonry. Current Journal of Applied Science and Technology, 40, 7-22.
https://doi.org/10.9734/cjast/2021/v40i4531624
[11]  EstÈVe, P., Beckett, C., Pedreschi, R., Bosche, F., Morel, J.C., Charef, R. and Habert, G. (2022) Developing an Integrated BIM/LCA Framework to Assess the Sustainability of Using Earthen Architecture. IOP Conference Series Earth and Environmental Science, 1078, Article ID: 012100.
https://doi.org/10.1088/1755-1315/1078/1/012100
[12]  Zhang, Z., Zhang, N., Yuan, Y., Phelan, P.E. and Attia, S. (2023) Thermal Performance Analysis of an Existing Building Heating Based on a Novel Active Phase Change Heater. Energy & Buildings, 62, Article ID: 106912.
https://doi.org/10.1016/j.enbuild.2022.112646
[13]  Augustia, V.A., Chafidz, A., Setyaningsih, L., Rizal, M., Kaavessina, M. and Al Zahrani, S.M. (2018) Effect of Date Palm Fiber Loadings on the Mechanical Properties of High Density Polyethylene/Date Palm Fiber Composites. Key Engineering Materials, 773, 94-99.
https://doi.org/10.4028/www.scientific.net/KEM.773.94
[14]  Ghazi, I.F. and Jaddan, R.I. (2021) Thermal Conductivity Characterization of Epoxy Based Composites Reinforced with Date Palm Waste Particles. Journal of Physics: Conference Series, 1973, Article ID: 012144.
https://doi.org/10.1088/1742-6596/1973/1/012144
[15]  Saad Azzem, L. and Bellel, N. (2022) Thermal and Physico-Chemical Characteristics of Plaster Reinforced with Wheat Straw for Use as Insulating Materials in Building. Buildings, 12, Article No. 1119.
https://doi.org/10.3390/buildings12081119
[16]  El-Sayed Ali, M. and Zeitoun, O.M. (2012) Discovering and Manufacturing a New Natural Insulating Material Extracted from a Plant Growing up in Saudi Arabia. Journal of Engineered Fibers and Fabrics, 7, 88-94.
https://doi.org/10.1177/155892501200700405
[17]  Ali, M.E. and Alabdulkarem, A. (2017) On Thermal Characteristics and Microstructure of a New Insulation Material Extracted from Date Palm Trees Surface Fibers. Construction and Building Materials, 138, 276-284.
https://doi.org/10.1016/j.conbuildmat.2017.02.012
[18]  Ali, M., Alabdulkarem, A., Nuhait, A., Al-Salem, K., Iannace, G., Almuzaiqer, R., et al. (2020) Thermal and Acoustic Characteristics of Novel Thermal Insulating Materials Made of Eucalyptus Globulus Leaves and Wheat Straw Fibers. Journal of Building Engineering, 32, Article ID: 101452.
https://doi.org/10.1016/j.jobe.2020.101452
[19]  Soviwadan, D., Kassegne, K.A. and Komla, S. (2015) Elaboration et caracterisation mecanique et physique des panneaux de particules de sciure de kapokier avec la poudre tanifere de la cosse de gousse de nere. European Scientific Journal, 11, 57-69.
[20]  Tido Tiwa, S. (2021) Earth-Based Construction Materials Reinforced with Tropical Plants and Recycled Waste Cellulose Pulp Fibre: Performance and Durability Assessment. Abuja, Nigeria.
[21]  Azzouz, F. (2015) Stabilisation des sols argileux de la region de tlemcen par les sels. Revue Elwahat Pour Les Recherches et Les Etudes, 8, 108-117.
https://doi.org/10.54246/1548-008-001-060
[22]  Abdelhalim, C., Melik, B. and Belgacem, B. (2022) Influence de l’ajoute de sable grossier sur la compressibilite du sol limoneux. Le 1er Seminaire national de genie civil et des travaux publics, Khenchela, Algérie, 15-16 Février 2022, 1-8.
[23]  Malbila, E., Djoko, B., Compaore, A., Toguyeni, D., Kam, S. and BathiÉBo, D.J. (2022) Experimental Study of Physical and Mechanical Properties of Concrete by Waste Glass Powder as Partial Replacement of Cement. International Journal of Advanced Research (IJAR), 10, 809-825.
https://doi.org/10.21474/IJAR01/15239
[24]  Yoganandam, K., Ganeshan, P., NagarajaGanesh, B. and Raja, K. (2020) Characterization Studies on Calotropis procera Fibers and Their Performance as Reinforcements in Epoxy Matrix. Journal of Natural Fibers, 17, 1706-1718.
https://doi.org/10.1080/15440478.2019.1588831
[25]  Alabdulkarem, A., Ali, M., Iannace, G., Sadek, S. and Almuzaiqer, R. (2018) Thermal Analysis, Microstructure and Acoustic Characteristics of Some Hybrid Natural Insulating Materials. Construction and Building Materials, 187, 185-196.
https://doi.org/10.1016/j.conbuildmat.2018.07.213
[26]  Manuel Álvarez, D., Ferrández, P., Guijarro-Miragaya, C. and Morón (2023) Characterization and under Water Action Behaviour of a New Plaster-Based Lightened Composites for Precast. Materials, 16, Article No. 872.
https://doi.org/10.3390/ma16020872
[27]  Tagne, N.R.S., Mbou, T.E., Harzallah, O., Ndapeu, D., Huisken, W., Nkemaja, D., Njeugna, E., Fogue, M. and Drean, J.-Y. (2020) Physicochemical and Mechanical Characterization of Raphia vinifera Pith. Advances in Materials Science and Engineering, 2020, Article ID: 8895913.
https://doi.org/10.1155/2020/8895913
[28]  Daligand, D. (2002) Plâtre, technique de l’ingenieur traite construction. Vol. 3, 24.
https://doi.org/10.51257/a-v3-c910
[29]  Meille, S. (2001) Etude du comportement mecanique du platre pris en relation avec sa microstructure. Lyon.
[30]  AFNOR (1993) Panneaux a base de bois—Determination de la masse volumique.
[31]  AFNOR (1993) EN 317, Particleboards and Fibreboards—Determination of Swelling in Thickness after Immersion in Water.
[32]  Toguyeni, D., Bathiebo, D. and Koulidiati, J. (2011) Etude experimentale, par la methode du plan chaud, des proprietes thermophysiques d’un bois tropical et d’un panneau isolant formule avec des intrants locaux. Journal de la societe ouest-africaine de chimie, No. 32, 18-26.
[33]  Ouédraogo, E., Coulibaly, O., Imbga, B.K., Kiéno, P.F. and Ouédraogo, A. (2018) Experimental Study of the Thermo-Physical Properties of Lateritic Blocks Used in the Habitat in Dry Tropical Climate. Physical Science International Journal, 19, 1-10.
https://doi.org/10.9734/PSIJ/2018/43887
[34]  Toussakoe, K., Ouedraogo, E., Imbga, K., Messan, A. and Kieno, F.P. (2021) Caracterisation mecanique et thermo-physique de l’adobe utilise dans la voute nubienne. Afrique Science, 19, 186-199.
[35]  Malbila, E., Delvoie, S., Toguyeni, D., Attia, S. and Courard, L. (2020) An Experimental Study on the Use of Fonio Straw and Shea Butter Residue for Improving the Thermophysical and Mechanical Properties of Compressed Earth Blocks. Journal of Minerals and Materials Characterization and Engineering, 8, 107-132.
https://doi.org/10.4236/jmmce.2020.83008
[36]  Mohamed, L., Mohamed, K., Najma, L. and Abdelhamid, K. (2018) Thermal Characterization of a New Effective Building Material Based on Clay and Olive Waste. MATEC Web of Conferences, 149, Article No. 02053.
https://doi.org/10.1051/matecconf/201814902053
[37]  AFnor (1982) NF p18-411, betons—caracteristiques communes des machines hydrauliques pour essais de compression, flexion et traction des materiaux durs.
[38]  EN 12089 (2013) European Standard Test Method for Thermal Insulating Products for Building Applications—Determination of Bending Behaviour. European Committee for Standardization, Brussels.
[39]  RILEM-TC (1984) Test for the Determination of Modulus of Rupture and Limit of Proportionality of Thin Fibre Reinforced Cement Sections. In: RILEM Recommendations for the Testing and Use of Constructions Materials, RILEM (Ed.) E & F SPON, London, 161-163.
[40]  Salas-Ruiz, A., Barbero-Barrera, M.M. and Ruiz-TÉLlez, T. (2019) Microstructural and Thermo-Physical Characterization of a Water Hyacinth Petiole for Thermal Insulation Particle Board Manufacture. Materials, 12, Article No. 560.
https://doi.org/10.3390/ma12040560
[41]  ANSI A 208 1 (1999) Medium Density Fibreboard. National Particleboard Association, Gaithersburg, 11 p.
[42]  Zaragoza-Benzal, A., Ferrandez, D., Diaz-Velilla, J.P. and ZÚNiga, J.A. (2023) Manufacture and Characterisation of a New Lightweight Plaster for Application in Wet Rooms under Circular Economy Criteria. Case Studies in Construction Materials, 19, e02380.
https://doi.org/10.1016/j.cscm.2023.e02380
[43]  Manjit, S. and Mridul, C. (1992) Glass Fibre-Reinforced Water-Resistant Gypsum-Based Composite. Cement Composites, 14, 23-32.
https://doi.org/10.1016/0958-9465(92)90036-U
[44]  Al-Homoud Mohammad, S. (2005) Performance Characteristics and Practical Applications of Common Building Thermal Insulation Materials. Building and Environment, 40, 353-366.
https://doi.org/10.1016/j.buildenv.2004.05.013
[45]  Zaragoza-Benzal, A., Ferrández, D., Santos, P. and Morón, C. (2023) Recovery of End-of-Life Tyres and Mineral Wool Waste: A Case Study with Gypsum Composite Materials Applying Circular Economy Criteria. Materials, 16, Article No. 243.
https://doi.org/10.3390/ma16010243
[46]  EN 13279-2 (2014) Gypsum Binders and Gypsum Plasters—Part 2: Test Methods.
[47]  Vidil, L. (2019) Etude de materiaux naturels 2d-potentialites d’utilisation comme renfort de materiaux composites.
[48]  Pierre and Dalmay (2009) Etude physico-chimique et mecanique de composites a matrice platre contenant des fibres vegetales. Limoges (France).
[49]  Rao, D. and Kumar, S. (2017) Mechanical Behaviour of Hybrid Bio-Composite Reinforced with Walnut (Juglans regia L.) Shell Particle and Coconut Fibre. International Journal on Emerging Technologies, 8, 604-608.
[50]  Yamossou, G.G. (2010) Mise au point d’un ecomateriau a vocation d’isolation thermique. Ouagadougou.
[51]  Ebanda, F.B. (2012) Etude des proprietes mecaniques et thermiques du platre renforce de fibres vegetales tropicales. Clermont-Ferrand.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413