全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Substitution of Aggregates in Concrete and Mortar with Coltan Mining Waste: Mechanical, Environmental, and Economic Impact Case Study

DOI: 10.4236/jmmce.2024.122010, PP. 139-163

Keywords: Aggregate, Coltan Mining Waste, Concrete, Mortar, Mechanical Strength, Life Cycle Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

The mining process involves drilling and excavation, resulting in the production of waste rock and tailings. The waste materials are then removed and stored in designated areas. This study aims to evaluate the mechanical strength and the environmental and economic impact of using Coltan Mining Waste (CMW) as a substitute for aggregates in concrete and mortar production. To achieve this, the CMW needs to be characterised. The Dreux Gorisse method was primarily used to produce concrete with a strength of 20 MPa at 28 days. The mortars, on the other hand, were formulated according to the NF P 18-452 standard. The environmental impact of using CMW as substitutes for natural aggregates in the production of concrete and mortar was analysed using SimaPro software. The results showed that mortars and concrete made with CMW have comparable compressive strengths to the reference mortar and concrete; reduce the negative impact on ecosystem quality, human health, resources, and climate change. It has also been shown that the substitution of aggregates by CMW reduces the cost of concrete and mortar as a function of the distance from the aggregate footprint.

References

[1]  López Boadella, I. (2019) Influencia de la utilización de los residuos mineros sobre las propiedades físicas y mecánicas del hormigón de muy alto rendimiento. Ph.D. Thesis, Universidad de Oviedo, Oviedo.
https://digibuo.uniovi.es/dspace/handle/10651/52632
[2]  Suárez González, J., Lopez Boadella, I., López Gayarre, F., López-Colina Pérez, C., Serrano López, M. and Stochino, F. (2020) Use of Mining Waste to Produce Ultra-High-Performance Fibre-Reinforced Concrete. Materials, 13, Article 2457.
https://doi.org/10.3390/ma13112457
[3]  Tayebi-Khorami, M., Edraki, M., Corder, G. and Golev, A. (2019) Re-Thinking Mining Waste through an Integrative Approach Led by Circular Economy Aspirations. Minerals, 9, Article 286.
https://doi.org/10.3390/min9050286
[4]  Ally, A.N., Blanche, M.M., Nana, U.J.P., Grâce, M.M., François, N. and Pettang, C. (2021) Recovery of Mining Wastes in Building Materials: A Review. Open Journal of Civil Engineering, 11, 379-397.
https://doi.org/10.4236/ojce.2021.114022
[5]  Ally, A.N., et al. (2023) Potential Use of Coltan Mining Waste Rock in Road Construction. Advances in Civil and Architectural Engineering, 14, 14-31.
https://doi.org/10.13167/2023.27.2
[6]  Bella, N., Dahane, M., Mebarki, T., Benmalek, A. and Benallal, M. (2022) Valorisation of Coal Mine Tailings in Roads Construction. Algerian Journal of Arid Environment, 8, 2307-2313.
[7]  Xue, G., Yilmaz, E., Song, W. and Cao, S. (2019) Mechanical, Flexural and Microstructural Properties of Cement-Tailings Matrix Composites: Effects of Fibre Type and Dosage. Composites Part B: Engineering, 172, 131-142.
https://doi.org/10.1016/j.compositesb.2019.05.039
[8]  Tan, Y., Zhang, K., Yu, X., Song, W., Wang, J. and Hai, C. (2020) The Mechanical and Microstructural Properties of Composite Structures Made of a Cement-Tailing Backfill and Rock Core. Minerals, 10, Article 159.
https://doi.org/10.3390/min10020159
[9]  Du, C.F., Chen, L. and Cai, D. (2011) Experiment on the Cement-Tailings Ratio of Cemented Filling with Tailings of Daye Iron Mine and Research on Hydration Reaction Mechanism. Advanced Materials Research, 250-253, 10-16.
https://doi.org/10.4028/www.scientific.net/AMR.250-253.10
[10]  Song, X., Pettersen, J.B., Pedersen, K.B. and Røberg, S. (2017) Comparative Life Cycle Assessment of Tailings Management and Energy Scenarios for a Copper Ore Mine: A Case Study in Northern Norway. Journal of Cleaner Production, 164, 892-904.
https://doi.org/10.1016/j.jclepro.2017.07.021
[11]  Dandautiya, R. and Singh, A.P. (2019) Utilization Potential of Fly Ash and Copper Tailings in Concrete as Partial Replacement of Cement along with Life Cycle Assessment. Waste Management, 99, 90-101.
https://doi.org/10.1016/j.wasman.2019.08.036
[12]  ISO (2024) Technical Committee ISO/TC 207-Environmental Management, ISO 14040: 2006.
https://www.iso.org/standard/37456.html
[13]  SimaPro (2024) LCA Software for Informed Changemakers.
https://Simapro.Com/
[14]  Afnor EDITIONS (2003) NF EN 1008, Eau de gâchage pour bétons-Spécifications d’échantillonnage, d’essais et d’évaluation de l’aptitude à l’emploi, y compris les eaux des processus de l’industrie du béton, telle que l’eau de gâchage pour béton.
https://www.boutique.afnor.org/fr-fr/norme/nf-en-1008/eau-de-gachage-pour-betons-specifications-dechantillonnage-dessais-et-deval/fa027978/21631
[15]  PDFCoffee (2022) ASTM C618-19, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
https://pdfcoffee.com/astm-c618-pdf-free.html
[16]  Benarchid, Y., Taha, Y., Argane, R. and Benzaazoua, M. (2018) Application of Quebec Recycling Guidelines to Assess the Use Feasibility of Waste Rocks as Construction Aggregates. Resources Policy, 59, 68-76.
https://doi.org/10.1016/j.resourpol.2018.01.004
[17]  Taha, Y., Benarchid, Y. and Benzaazoua, M. (2021) Environmental Behaviour of Waste Rocks Based Concrete: Leaching Performance Assessment. Resources Policy, 74, Article 101419.
https://doi.org/10.1016/j.resourpol.2019.101419
[18]  Afnor EDITIONS (2020) NF EN 1097-2, Essais pour déterminer les caractéristiques mécaniques et physiques de granulats-Partie 2 : Méthodes pour la détermination de la résistance à la fragmentation.
https://www.boutique.afnor.org/fr-fr/norme/nf-en-10972/essais-pour-determiner-les-caracteristiques-mecaniques-et-physiques-des-gra/fa192649/85563
[19]  Jean, F. and Georges, D. (2023) Nouveau guide du beton et de ses constituants. Librairie Eyrolles, Paris.
https://www.eyrolles.com/BTP/Livre/nouveau-guide-du-beton-et-de-ses-constituants-9782212102314/
[20]  Afnor EDITIONS (2017) NF P18-452, Bétons-Mesure du temps d’écoulement des bétons et des mortiers au maniabilimetres.
https://www.boutique.afnor.org/fr-fr/norme/nf-p18452/betons-mesure-du-temps-decoulement-des-betons-et-des-mortiers-au-maniabilim/fa171358/58582
[21]  Afnor EDITIONS (2007) NF EN 1015-2/A1, Méthodes d’essai des mortiers pour maçonnerie-Partie 2 : Echantillonnage global des mortiers et préparation des mortiers pour essai.
https://www.boutique.afnor.org/fr-fr/norme/nf-en-10152/methodes-dessai-des-mortiers-pour-maconnerie-partie-2-echantillonnage-globa/fa037042/10526
[22]  Afnor EDITIONS (2021) NF EN 206 A1, Béton-Spécification, performances, production et conformité.
[23]  Afnor EDITIONS (1981) NF P18-451, Béton-Essais d’affaissement.
https://www.boutique.afnor.org/fr-fr/norme/nf-p18451/betons-essai-daffaissement/fa016618/54908
[24]  Afnor EDITIONS (2016) NF EN 196-1, Méthodes d’essais des ciments-Partie 1 : Détermination des résistances.
https://www.boutique.afnor.org/fr-fr/norme/nf-en-1961/methodes-dessais-des-ciments-partie-1-determination-des-resistances/fa184622/57803
[25]  Afnor EDITIONS (2019) NF EN 12390-7, Essai pour béton durci-Partie 7 : Masse volumique du béton.
https://www.boutique.afnor.org/fr-fr/norme/nf-en-123907/essai-pour-beton-durci-partie-7-masse-volumique-du-beton/fa043002/18896
[26]  Cabeza, L.F., Rincón, L., Vilariño, V., Pérez, G. and Castell, A. (2014) Life Cycle Assessment (LCA) and Life Cycle Energy Analysis (LCEA) of Buildings and the Building Sector: A Review. Renewable and Sustainable Energy Reviews, 29, 394-416.
https://doi.org/10.1016/j.rser.2013.08.037
[27]  Liu, K., Hung, M.-J., Yeh, P.-C. and Kuo, J.-Y. (2014) GIS-Based Regionalization of LCA. Journal of Geoscience and Environment Protection, 2, 1-8.
https://doi.org/10.4236/gep.2014.22001
[28]  Gonçalves, J.P., Tavares, L.M., Toledo Filho, R.D., Fairbairn, E.M.R. and Cunha, E.R. (2007) Comparison of Natural and Manufactured Fine Aggregates in Cement Mortars. Cement and Concrete Research, 37, 924-932.
https://doi.org/10.1016/j.cemconres.2007.03.009
[29]  Grâce, M.M., et al. (2020) Concrete Based on Recycled Aggregates for Their Use in Construction: Case of Goma (DRC). Open Journal of Civil Engineering, 10, 226-238.
https://doi.org/10.4236/ojce.2020.103019
[30]  El Machi, A., Mabroum, S., Taha, Y., Tagnit-Hamou, A., Benzaazoua, M. and Hakkou, R. (2021) Use of Flint from Phosphate Mine Waste Rocks as an Alternative Aggregates for Concrete. Construction and Building Materials, 271, Article 121886.
https://doi.org/10.1016/j.conbuildmat.2020.121886
[31]  Butler, L.J., West, J. and Tighe, S. (2011) Quantification of Recycled Concrete Aggregate (RCA) Properties for Usage in Bridges and Pavements: An Ontario Case Study. Ph.D. Thesis, University of Waterloo, Waterloo.
https://www.semanticscholar.org/paper/Quantification-of-Recycled-Concrete-Aggregate-(RCA)-Butler-West/545854a4b06251bc3a3c65d138d84277c7779dd0
[32]  Kuranchie, F.A., Shukla, S.K., Habibi, D. and Mohyeddin, A. (2015) Utilisation of Iron Ore Tailings as Aggregates in Concrete. Cogent Engineering, 2, Article 1083137.
https://doi.org/10.1080/23311916.2015.1083137
[33]  Garcia-Troncoso, N., Baykara, H., Cornejo, M.H., Riofrio, A., Tinoco-Hidalgo, M. and Flores-Rada, J. (2022) Comparative Mechanical Properties of Conventional Concrete Mixture and Concrete Incorporating Mining Tailings Sands. Case Studies in Construction Materials, 16, e01031.
https://doi.org/10.1016/j.cscm.2022.e01031

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413