|
好氧反硝化细菌脱氮性能及其在污水处理中应用研究进展
|
Abstract:
好氧反硝化菌自从第一次被提出以来,就因为其挑战了厌氧反硝化理论,能够在好氧条件下发挥反硝化作用,实现了在一个反应器里硝化反硝化同时进行而受到了很多关注。本文较为系统的总结了近几年来从不同环境中筛选分离出的好氧反硝化菌,并从“协同呼吸理论”和“好氧反硝化酶作用”这两个方面深入探讨了好氧反硝化菌的反硝化作用机理。在此基础上,考察了各种环境因子对好氧反硝化菌脱氮效果的影响。包括碳源的种类,温度,溶氧,pH,盐度。最后对好氧反硝化菌在污水处理领域的应用前景进行分析,并利用好氧反硝化菌易于附着于生物膜表面,从而达到高效稳定运行的目的,为污水处理领域的实际应用研究提供理论依据。
Since it was first proposed, aerobic denitrification bacteria have attracted much attention because they challenge the theory of anaerobic denitrification, can play the role of denitrification under aerobic conditions, and achieve simultaneous nitrification and denitrification in one reactor. This paper systematically summarizes the aerobic denitrifying bacteria isolated from different environments in recent years, and further discusses the denitrifying mechanism of aerobic denitrifying bacteria from two aspects: “cooperative respiration theory” and “aerobic denitrifying enzyme action”. On this basis, the effects of various environmental factors on the denitrification efficiency of aerobic denitrifying bacteria are investigated. Including the type of carbon source, temperature, dissolved oxygen, pH, salinity. Finally, the application prospect of aerobic denitrifying bacteria in the field of sewage treatment is analyzed, and the use of aerobic denitrifying bacteria is easy to attach to the surface of biofilm, so as to achieve the purpose of efficient and stable operation, and provide a theoretical basis for the practical application research in the field of sewage treatment.
[1] | 张梦寒, 李建, 姜韬, 等. 苏州市桶装饮用水中藻类的检测[J]. 职业与健康, 2014, 30(24): 3598-3600 |
[2] | Ahn, Y.H. (2006) Sustainable Nitrogen Elimination Biotechnologies: A Review. Process Biochemistry, 41, 1709-1721. https://doi.org/10.1016/j.procbio.2006.03.033 |
[3] | Zheng, H.Y., Liu, Y., Gao, X.Y., et al. (2012) Characterization of A Marine Origin Aerobic Nitrifying-Denitrifying Bacterium. Journal of Bioscience and Bioengineering, 114, 33-37. https://doi.org/10.1016/j.jbiosc.2012.02.025 |
[4] | Jung, J., Yeom, J., Han, J., et al. (2012) Seasonal Changes in Nitrogen-Cycle Gene Abundances and in Bacterial Communities in Acidic Forest Soils. Journal of Microbiology, 50, 365-373. https://doi.org/10.1007/s12275-012-1465-2 |
[5] | Frette, L., Gejisbjerg, B. and Westermann, P. (1997) Aerobic Denitrifiers Isolated from an Alternating Active Sludge System. FEMS Microbiology Ecology, 24, 363-370. https://doi.org/10.1111/j.1574-6941.1997.tb00453.x |
[6] | Meiberg, J.B.M. (1980) Effect of Dissolved Oxygen Tension on the Metabolism of Methylated Amines in Hyphomicrobumx in the Absence and Presence of Nitrate Evidence for Aerobic Denitrifcation. The Journal of General Microbiology, 120, 453-463. https://doi.org/10.1099/00221287-120-2-453 |
[7] | Robertson, L.A., Van Niel, E.W., Torremans, R.A., et al. (1988) Simultaneous Nitrification and Denitrificationin Aerobic Chemostat Cultures of Thiosphaera pantotropha. Applied and Environmental Microbiology, 54, 2812-2818. https://doi.org/10.1128/aem.54.11.2812-2818.1988 |
[8] | 康鹏亮, 张海涵, 黄廷林, 等. 湖库沉积物好氧反硝化菌群脱氮特性及种群结构[J]. 环境科学, 2018, 39(5): 2431-2437. |
[9] | 郭焱, 何雯, 吴丹, 张雅清, 代加南. 好氧反硝化菌Pseudomonas sp. J-5的分离及脱氮性能研究[J]. 绿色科技, 2023, 25(14): 224-229. |
[10] | 李茜, 孙正祥, 周燚. 高效好氧反硝化盖氏假单胞菌YZ-7的鉴定及其脱氮性能研究[J]. 南方农业学报, 2023, 54(5): 1549-1558. |
[11] | 夏平, 马民, 宫玲, 杜敬, 曹经纶, 罗凡, 欧阳卓明, 赵御豪. 好氧反硝化菌株Herbaspirillum sp. XDT-1分离鉴定及特性研究[J]. 给水排水, 2022, 58(S2): 177-185. |
[12] | 张志昊. 好氧反硝化细菌Burkholderia sp. ZH8的脱氮机理及生物强化应用研究[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2022. |
[13] | Ji, B., Yang, K., Zhu, L., et al. (2015) Aerobic Denitrification: A Review of Important Advances of the Last 30 Years. Biotechnology and Bioprocess Engineering, 20, 643-651. https://doi.org/10.1007/s12257-015-0009-0 |
[14] | Jetten, M.S., Logemann, S., Muyzer, G., Robertson, L.A., de Vries, S., et al. (1997) Novel Principles in the Microbial Conversion of Nitrogen Compounds. Antonie Van Leeuwenhoek, 71, 75-93. https://doi.org/10.1023/A:1000150219937 |
[15] | Kumar, M. and Linj, G. (2010) Co-Existence of Anammox and Denitrification for Simultaneous Nitrogen and Carbon Removal-Strategies and Issues. Journal of Hazardous Materials, 178, 1-9. https://doi.org/10.1016/j.jhazmat.2010.01.077 |
[16] | Xi, H.P., Zhou, X.T., Arslan, M., Luo, Z.J., Wei, J., Wu, Z.R., et al. (2022) Heterotrophic Nitrification and Aerobic Denitrification Process: Promising but a Long Way to Go in the Wastewater Treatment. Science of the Total Environment, 805, Article ID: 150212. https://doi.org/10.1016/j.scitotenv.2021.150212 |
[17] | 赵洋, 孙慧明, 林浩澎, 罗娉婷, 朱雅婷, 陈琼华, 舒琥. 一株安全高效的好氧反硝化菌Pseudomonas stutzeri DZ11的生物安全性及脱氮性能研究[J]. 生物技术通报, 2022, 38(10): 226-234. |
[18] | Chen, Q. and Ni, J.R. (2012) Ammonium Removal by Agrobacterium sp. LAD9 Capable of Heterotrophic Nitrification-Aerobic Denitrification. Journal of Bioscience and Bioengineering, 113, 619-623. https://doi.org/10.1016/j.jbiosc.2011.12.012 |
[19] | Wu, L., Ding, X., Lin, Y., et al. (2022) Nitrogen Removal by a Novel Heterotrophic Nitrification and Aerobic Denitrification Bacterium Acinetobacter calcoaceticus TY1 Under Low Temperatures. Bioresource Technology, 353, Article ID: 127148. https://doi.org/10.1016/j.biortech.2022.127148 |
[20] | Ji, B., Wang, H.Y. and Yang, K. (2014) Tolerance of an Aerobic Denitrifier Pseudomonas Stutzerito High O2 Concentrations. Biotechnology Letters, 36, 719-722. https://doi.org/10.1007/s10529-013-1417-x |
[21] | 董怡华, 王凌潇, 任涵雪, 等. 一株耐低温异养硝化-好氧反硝化菌的分离鉴定及其脱氮特性[J]. 生物技术通报, 2023, 39(12): 237-249. |
[22] | Su, J.F., Shao, S.C., Huang, T.L., Ma, F., Zhang, K., Wen, G. and Zheng, S.C. (2016) Isolation, Identification, and Algicidal Activity of Aerobic Denitrifying Bacterium R11 and Its Effect on Microcystis aeruginosa. Water Science & Technology, 73, 2600-2607. https://doi.org/10.2166/wst.2016.085 |
[23] | Zhao, Y.Y., Min, H.C., Luo, K.Y., Zhang, R.J., Chen, Q. and Chen, Z.B. (2022) Transcriptomics and Proteomics Revealed the Psychrotolerant and Antibiotic-Resistant Mechanisms of Strain Pseudomonas psychrophila RNC-1 Capable of Assimilatory Nitrate Reduction and Aerobic Denitrification. Science of the Total Environment, 820, Article ID: 153169. https://doi.org/10.1016/j.scitotenv.2022.153169 |
[24] | Yao, S., Ni, J., Ma, T. and Li, C. (2013) Heterotrophic Nitrification and Aerobic Denitrification at Low Temperature by a Newly Isolated Bacterium, Acinetobacter Sp. HA2. Bioresource Technology, 139, 80-86. https://doi.org/10.1016/j.biortech.2013.03.189 |
[25] | Wei, B., Luo, X., Ma, W., et al. (2022) Biological Nitrogen Removal and Metabolic Characteristics of a Novel Cold-Resistant Heterotrophic Nitrification and Aerobic Denitrification Rhizobium sp. WS7. Bioresource Technology, 362, Article ID: 127756. https://doi.org/10.1016/j.biortech.2022.127756 |
[26] | Lin, Z., Zhou, J., He, L., et al. (2022) High-Temperature Biofilm System Based on Heterotrophic Nitrification and Aerobic Denitrification Treating High-Strength Ammonia Wastewater: Nitrogen Removal Performances and Temperature-Regulated Metabolicpathways. Bioresource Technology, 344, Article ID: 126184. https://doi.org/10.1016/j.biortech.2021.126184 |
[27] | Lei, X., Jia, Y.T., Chen, Y.C. and Hu, Y.Y. (2019) Simultaneous Nitrification and Denitrification without Nitrite Accumulation by a Novel Isolated Ochrobactrum Anthropic LJ81. Bioresource Technology, 272, 442-450. https://doi.org/10.1016/j.biortech.2018.10.060 |
[28] | Sun, Y.L., Li, A., Zhang, X.N. and Ma, F. (2015) Regulation of Dissolved Oxygen from Accumulated Nitrite during the Heterotrophic Nitrification and Aerobic Denitrification of Pseudomonas stutzeri T13. Applied Microbiology and Biotechnology, 99, 3243-3248. https://doi.org/10.1007/s00253-014-6221-6 |
[29] | Sun, Z.Y., Lv, Y.K., Liu, Y.X. and Ren, R.P. (2016) Removal of Nitrogen by Heterotrophic Nitrification-Aerobic Denitrification of a Novel Metal Resistant Bacterium Cupriavidus sp. S1. Bioresource Technology, 220, 142-150. https://doi.org/10.1016/j.biortech.2016.07.110 |
[30] | 张宇红, 刘香宇, 董先博, 等. 好氧反硝化细菌SY-D-22的分离、优化及脱氮机理[J]. 微生物学通报, 2023, 50(5): 1815-1825. |
[31] | Huang., F., Pan, L.Q., Lv, N. and Tang, X.M. (2017) Characterization of Novel Bacillus Strain N31 from Mariculture Water Capable of Halophilic Heterotrophic Nitrification-Aerobic Denitrification. Journal of Bioscience and Bioengineering, 124, 564-571. https://doi.org/10.1016/j.jbiosc.2017.06.008 |
[32] | 滕峪, 汪鲁, 王占英, 等. 一株嗜碱兼性好氧反硝化菌Marinobacter sp. B3的分离鉴定及脱氮性能研究[J]. 海洋与湖沼, 2024(26): 1-13. |
[33] | Su, J., Ting Lian, T., Lin Huang, T., et al. (2017) Microcystis Aeruginosa Flour as Carbon and Nitrogen Source for Aerobic Denitrification and Algicidal Effect of Raoultella sp. R11. Ecological Engineering, 105, 162-169. https://doi.org/10.1016/j.ecoleng.2017.04.014 |
[34] | Wang, T., Dang, Q.F., Liu, C.S., Yan, J.Q., Fan, B., Cha, D.S., Yin, Y.Y. and Zhang, Y.B. (2016) Heterotrophic Nitrogen Removal by a Newly-Isolated Alkalitolerant Microorganism, Serratia marcescens W5. Bioresource Technology, 211, 618-627. https://doi.org/10.1016/j.biortech.2016.03.142 |
[35] | Duan, J.M., Fang, H.D., Su, B., Chen, J.F. and Lin, J.M. (2015) Characterization of a Halophilic Heterotrophic Nitrification-Aerobic Denitrification Bacterium and Its Application on Treatment of Saline Wastewater. Bioresource Technology, 179, 421-428. https://doi.org/10.1016/j.biortech.2014.12.057 |
[36] | Cui, Y., Cuiy, W. and Huang, J.L. (2021) A Novel Halophilic Exiguobacterium Mexicanum Strain Removes Nitrogen from Saline Wastewater via Heterotrophic Nitrification and Aerobic Denitrification. Bioresource Technology, 333, Article ID: 125189. https://doi.org/10.1016/j.biortech.2021.125189 |
[37] | Kixmuller, D. and Greie, J.C. (2012) Construction and Characterization of a Gradually Inducible Expression Vector for Halobacterium salinarum, Based on the Kdp Promoter. Applied and Environmental Microbiology, 78, 2100-2105. https://doi.org/10.1128/AEM.07155-11 |
[38] | He, X.L., Sun, Q., Xu, T.Y., Dai, M. and Wei, D.S. (2019) Removal of Nitrogen by Heterotrophic Nitrification-Aerobic Denitrification of a Novel Halotolerant Bacterium Pseudomonas mendocina TJPU04. Bioprocess and Biosystems Engineering, 42, 853-866. https://doi.org/10.1007/s00449-019-02088-8 |
[39] | Abdelfattah, A., Hossain, M.I. and Chrng, L. (2020) High-Strength Wastewater Treatment Using Microbial Biofilm Reactor: A Critical Review. World Journal of Microbiology and Biotechnology, 36, Article No. 75. https://doi.org/10.1007/s11274-020-02853-y |
[40] | Tian, Z., Zhou, N., You, W., et al. (2021) Mitigating NO and N2O Emissions from a Pilot-Scale Oxidation Ditch Using Bioaugmentation of Immobilized Aerobic Denitrifying Bacteria. Bioresource Technology, 340, Article ID: 125704. https://doi.org/10.1016/j.biortech.2021.125704 |
[41] | Hong, P., Yang, K., Shu, Y., et al. (2021) Efficacy of Auto-Aggregating Aerobic Denitrifiers with Coaggregation Traits for Bioaugmentation Performance in Biofilm-Formation and Nitrogen-Removal. Bioresource Technology, 337, Article ID: 125391. https://doi.org/10.1016/j.biortech.2021.125391 |
[42] | Chen, X., Zhang, Q., Zhu, Y. and Zhao, T.T. (2021) Response of Wastewater Treatment Performance, Microbial Composition and Functional Genes to Different C/N Ratios and Carrier Types in MBBR Inoculated with Heterotrophic Nitrification-Aerobic Denitrification Bacteria. Bioresource Technology, 336, Article ID: 125339. https://doi.org/10.1016/j.biortech.2021.125339 |