全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Why the Central Monster in M87 Should Be a Massive DEO Rather than a SMBH?

DOI: 10.4236/jmp.2024.155026, PP. 537-549

Keywords: General Relativity, Big Bang, Black Holes, QSOs, Neutron Stars, QCD, Condensed Matter, Incompressibility, Superfluidity, Super-Conductivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we show that massive envelopes made of highly compressed normal matter surrounding dark objects (DEOs) can curve the surrounding spacetime and make the systems observationally indistinguishable from their massive black hole counterparts. DEOs are new astrophysical objects that are made up of entropy-free incompressible supranuclear dense superfluid (SuSu-matter), embedded in flat spacetimes and invisible to outside observers, practically trapped in false vacua. Based on highly accurate numerical modelling of the internal structures of pulsars and massive neutron stars, and in combination with using a large variety of EOSs, we show that the mass range of DEOs is practically unbounded from above: it spans those of massive neutron stars, stellar and even supermassive black holes: thanks to the universal maximum density of normal matter, \"\", beyond which normal matter converts into SuSu-matter. We apply the scenario to the Crab and Vela pulsars, the massive magnetar PSR J0740 6620, the presumably massive NS formed in GW170817, and the SMBHs in Sgr A* and M87*. Our numerical results also reveal that DEO-Envelope systems not only mimic massive BHs nicely but also indicate that massive DEOs can hide vast amounts of matter capable of turning our universe into a SuSu-matter-dominated one, essentially trapped in false vacua.

References

[1]  Riess, A.G., et al. (2019) ApJ, 876, 85.
https://doi.org/10.3847/1538-4357/ab1422
[2]  Di Valentino, E., Mena, O., et al. (2021) Classical and Quantum Gravity, 38, Article ID: 153001.
[3]  Dianotti, M.G., De Simone, B., et al. (2021) ApJ, 912, 150.
https://doi.org/10.3847/1538-4357/abeb73
[4]  Hujeirat, A.A. (2023) Journal of Modern Physics, 14, 183-197.
https://doi.org/10.4236/jmp.2023.143013
[5]  Hujeirat, A.A. (2023) Journal of Modern Physics, 14, 415-431.
https://doi.org/10.4236/jmp.2023.144023
[6]  Caroll, S.M. (2001) LRR, 4, 1.
[7]  Sato, K. (1981) Monthly Notices of the Royal Astronomical Society, 195, 467-479.
https://doi.org/10.1093/mnras/195.3.467
[8]  Steinhardt, P.J. (2011) Scientific American, 304, 18.
[9]  Labbe, et al. (2023) Nature, 616, 266-269.
https://doi.org/10.1038/s41586-023-05786-2
[10]  Natarajan, P., et al. (2024) ApJL, 960, L1.
https://doi.org/10.3847/2041-8213/ad0e76
[11]  Boylan-Kolchin, M. (2023) Nature Astronomy, 7, 731-735.
https://doi.org/10.1038/s41550-023-01937-7
[12]  Hujeirat, A.A. (2022) Journal of Modern Physics, 13, 1474-1498.
https://doi.org/10.4236/jmp.2022.1311091
[13]  The Event Horizon Telescope Collaboration (2024) Astronomy & Astrophysics, 681, A79.
https://doi.org/10.1051/0004-6361/202347932
[14]  Mummery, A. and Balbus, S. (2023) Monthly Notices of the Royal Astronomical Society, 521, 2439-2463.
https://doi.org/10.1093/mnras/stad641
[15]  Lu., R.-S., Asada, K. and Kirchbaum, T. (2023) Nature, 616, 686-690.
[16]  Johnson, M., Lupsasca, A., et al. (2020) Science Advances, 6, eaaz1310.
https://doi.org/10.1126/sciadv.aaz1310
[17]  Hujeirat, A.A., Livio, M., Camenzind, M. and Burkert, A. (2033) Astronomy & Astrophysics, 408, 415-430.
https://doi.org/10.1051/0004-6361:20031040
[18]  Abbott, et al. (2019) Physical Review X, 9, Article ID: 011001.
[19]  Ligo Cooperation (2023) Another Long Hard Look for a Remnant of GW170817.
https://www.ligo.org/science/Publication-GW170817PostMergerLong/index.php
[20]  Hujeirat, A. and Samtaney, R. (2020) Journal of Modern Physics, 11, 1785-1798.
https://doi.org/10.4236/jmp.2020.1111111
[21]  Piro, L., Troja, E. and Zhang, B. (2019) Monthly Notices of the Royal Astronomical Society, 483, 1912-1921.
https://doi.org/10.1093/mnras/sty3047
[22]  Hujeirat, A.A. (2023) Journal of Modern Physics, 14, 790-801.
https://doi.org/10.4236/jmp.2023.146045
[23]  Hujeirat, A.A. and Wicker, M. (2023) Journal of Modern Physics, 14, 1458-1463.
https://doi.org/10.4236/jmp.2023.1411085
[24]  Hujeirat, A.A. and Samtaney, R. (2020) Journal of Modern Physics, 11, 1785-1798.
https://doi.org/10.4236/jmp.2020.1111111
[25]  Hujeirat, A.A. and Samtaney, R. (2020) Journal of Modern Physics, 11, 395-406.
https://doi.org/10.4236/jmp.2020.113025
[26]  Roy, J., Yashwant Gupta, Y. and Lewandowski, W. (2012) Monthly Notices of the Royal Astronomical Society, 424, 2213-2221.
https://doi.org/10.1111/j.1365-2966.2012.21380.x
[27]  Hujeirat, A.A. and Wicker, M. (2023) Journal of Modern Physics, 14, 1409-1425.
https://doi.org/10.4236/jmp.2023.1411081
[28]  ‘t Hooft, G. (2000) The Holographic Principle.
[29]  ‘t Hooft, G. (2001) Basics and Highlights in Fundamental Physics. Proceedings of the International School of Subnuclear Physics, Erice, August-September 2000, 72-100.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133