全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Entanglement and Volume Monogamy Features of Permutation Symmetric N-Qubit Pure States with N-Distinct Spinors: GHZ and States

DOI: 10.4236/jqis.2024.142003, PP. 29-51

Keywords: Permutation Symmetric States, Monogamy, Pairwise Entanglement

Full-Text   Cite this paper   Add to My Lib

Abstract:

We explore the entanglement features of pure symmetric N-qubit states characterized by N-distinct spinors with a particular focus on the Greenberger-Horne-Zeilinger (GHZ) states and , an equal superposition of W and obverse W states. Along with a comparison of pairwise entanglement and monogamy properties, we explore the geometric information contained in them by constructing their canonical steering ellipsoids. We obtain the volume monogamy relations satisfied by states as a function of number of qubits and compare with the maximal monogamy property of GHZ states.

References

[1]  Sackett, C.A., Kielpinski, D., King, B.E., Langer, C., Meyer, V., Myatt, C.J., Rowe, M., Turchette, Q.A., Itano, W.M., Wineland, D.J. and Monroe, C. (2000) Experimental Entanglement of Four Particles. Nature (London), 404, 256-259.
https://doi.org/10.1038/35005011
[2]  Roos, C.F., Riebe, M., Haffner, H., Hansel, W., Benhelm, J., Lancaster, G.P.T., Becher, C., Schmidt-Kaler, F. and Blatt, R. (2004) Control and Measurement of Three-Qubit Entangled States. Science, 304, 1478-1480.
https://doi.org/10.1126/science.1097522
[3]  Leibfried, D.G., Knill, E.H., Seidelin, S., Britton, J.W., Blakestad, B.R., Chiaverini, J., Hume, D., Itano, W.M., Jost, J.D., Langer, C., Ozeri, R., Reichle, R. and Wineland, D.J. (2005) Creation of a Six-Atom “Schrodinger Cat” State. Nature (London), 438, 639-642.
https://doi.org/10.1038/nature04251
[4]  Sorensen, A., Duan, L.-M., Cirac, J.I. and Zoller, P. (2001) Many-Particle Entanglement with Bose-Einstein Condensates. Nature (London), 409, 63-66.
https://doi.org/10.1038/35051038
[5]  Usha Devi, A.R., Prabhu, R. and Rajagopal, A.K. (2007) Characterizing Multiparticle Entanglement in Symmetric N-Qubit States via Negativity of Covariance Matrices. Physical Review Letters, 98, Article ID: 060501.
https://doi.org/10.1103/PhysRevLett.98.060501
[6]  Avishai, Y. (2023) On Topics in Quantum Games. Journal of Quantum Information Science, 13, 79-130.
https://doi.org/10.4236/jqis.2023.133006
[7]  Aloff, S., Miniere, M. and Saccoman, J. (2021) A Minimal Presentation of a Two-Generator Permutation Group on the Set of Integers. Advances in Pure Mathematics, 11, 816-834.
https://doi.org/10.4236/apm.2021.1110055
[8]  Greenberger, D.M., Horne, M.A., Shimony, A. and Zeilinger, A. (1990) Bell’s Theorem without Inequalities. American Journal of Physics, 58, 1131-1143.
https://doi.org/10.1119/1.16243
[9]  Dicke, R.H. (1954) Coherence in Spontaneous Radiation Processes. Physical Review, 93, 99-110.
https://doi.org/10.1103/PhysRev.93.99
[10]  Majorana, E. (1932) Atomi Orientati in Campo Magnetico Variabile. Nuovo Cimento, 9, 43-50.
https://doi.org/10.1007/BF02960953
[11]  Bastin, T., Krins, S., Mathonet, P., Godefroid, M., Lamata, L. and Solano, E. (2009) Operational Families of Entanglement Classes for Symmetric N-Qubit States. Physical Review Letters, 103, Article ID: 070503.
https://doi.org/10.1103/PhysRevLett.103.070503
[12]  Mathonet, P., Krins, S., Godefroid, M., Lamata, L., Solano, E. and Bastin, T. (2010) Entanglement Equivalence of N-Qubit Symmetric States. Physical Review A, 81, Article ID: 052315.
https://doi.org/10.1103/PhysRevA.81.052315
[13]  Usha Devi, Sudha, A.R. and Rajagopal, A.K. (2012) Majorana Representation of Symmetric Multiqubit States. Quantum Information Processing, 11, 685-710.
https://doi.org/10.1007/s11128-011-0280-8
[14]  Markham, J.H. (2011) Entanglement and Symmetry in Permutation Symmetric States. Physical Review A, 83, Article ID: 042332.
https://doi.org/10.1103/PhysRevA.83.042332
[15]  Jevtic, S., Pusey, M.F., Jennings, D. and Rudolph, T. (2014) Quantum Steering Ellipsoids. Physical Review Letters, 113, Article ID: 020402.
https://doi.org/10.1103/PhysRevLett.113.020402
[16]  Shi, M., Jiang, F., Sun, C. and Du, J. (2011) Geometric Picture of Quantum Discord for Two-Qubit Quantum States. New Journal of Physics 13, Article ID: 073016.
https://doi.org/10.1088/1367-2630/13/7/073016
[17]  Shi, M., Yang, W., Jiang F. and Du, J. (2011) Quantum Discord of Two-Qubit Rank-2 States. Journal of Physics A: Mathematical and Theoretical, 44, Article ID: 415304.
https://doi.org/10.1088/1751-8113/44/41/415304
[18]  Milne, A., Jevtic, S., Jennings, D., Wiseman, H. and Rudolph, T. (2014) Quantum Steering Ellipsoids, Extremal Physical States and Monogamy. New Journal of Physics, 16, Article ID: 083017.
https://doi.org/10.1088/1367-2630/16/8/083017
[19]  Milne, A., Jennings, D., Jevtic, S. and Rudolph, T. (2014) Quantum Correlations of Two-Qubit States with One Maximally Mixed Marginal. Physical Review A, 90, Article ID: 024302.
https://doi.org/10.1103/PhysRevA.90.024302
[20]  Cheng, S., Milne, A., Hall, M.J.W. and Wiseman, H.M. (2016) Volume Monogamy of Quantum Steering Ellipsoids for Multiqubit Systems. Physical Review A, 94, Article ID: 042105.
https://doi.org/10.1103/PhysRevA.94.042105
[21]  Coffman, V., Kundu, J. and Wootters, W.K. (2000) Distributed Entanglement. Physical Review A, 61, Article ID: 052306.
https://doi.org/10.1103/PhysRevA.61.052306
[22]  Verstraete, F., Dehaene, J. and DeMoor, B. (2001) Local Filtering Operations on Two Qubits. Physical Review A, 64, 010101(R).
https://doi.org/10.1103/PhysRevA.64.010101
[23]  Verstraete, F. (2002) Quantum Entanglement and Quantum Information. Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven.
[24]  Sudha Karthik, H.S., Pal, R., Akhilesh, K.S., Ghosh, S., Mallesh, K.S. and Usha Devi, A.R. (2020) Canonical Forms of Two-Qubit States under Local Operations. Physical Review A, 102, Article ID: 052419.
https://doi.org/10.1103/PhysRevA.102.052419
[25]  Anjali, K., Reena, I., Sudha Divyamani, B.G., Karthik, H.S., Mallesh, K.S. and Usha Devi, A.R. (2022) Geometric Picture for SLOCC Classification of Pure Permutation Symmetric Three-Qubit States. Quantum Information Processing, 21, 326.
https://doi.org/10.1007/s11128-022-03665-9
[26]  Divyamani, B.G., Reena, I., Panigrahi, P.K., Usha Devi, A.R. and Sudha (2023) Canonical Steering Ellipsoids of Pure Symmetric Multiqubit States with Two Distinct Spinors and Volume Monogamy of Steering. Physical Review A, 107, Article ID: 042207.
https://doi.org/10.1103/PhysRevA.107.042207
[27]  The Nth Roots of Any Complex Number z = e Are Given by zk=eiφk Where φk=(φ+2kπ/N), k = 0,1,2,...,N-1.
[28]  Hill, S. and Wootters, W.K. (1997) Entanglement of a Pair of Quantum Bits. Physical Review Letters, 78, 5022-5025.
https://doi.org/10.1103/PhysRevLett.78.5022
[29]  Wootters, W.K. (1998) Entanglement of Formation of an Arbitrary State of Two Qubits. Physical Review Letters, 80, 2245-2248.
https://doi.org/10.1103/PhysRevLett.80.2245
[30]  Geetha, P.J., Sudha and Mallesh, K.S. (2017) Comparative Analysis of Entanglement Measures Based on Monogamy Inequality. Chinese Physics B, 26, Article ID: 050301.
https://doi.org/10.1088/1674-1056/26/5/050301
[31]  Wong, A. and Christensen, N. (2001) Potential Multiparticle Entanglement Measure. Physical Review A, 63, Article ID: 044301.
https://doi.org/10.1103/PhysRevA.63.044301
[32]  Li, D. (2012) The N-Tangle of Odd N Qubits. Quantum Information Processing, 11, 481.
https://doi.org/10.1007/s11128-011-0256-8
[33]  Srinivasa Rao, K.N. (1988) The Rotation and Lorentz Groups and Their Representations for Physicists. Wiley Eastern, New Delhi.
[34]  Tehral, B.M. (2004) Is Entanglement Monogamous? IBM Journal of Research and Development, 48, 71-78.
https://doi.org/10.1147/rd.481.0071
[35]  Pawłowski, M. (2010) Security Proof for Cryptographic Protocols Based Only on the Monogamy of Bell’s Inequality Violations. Physical Review A, 82, Article ID: 032313.
https://doi.org/10.1103/PhysRevA.82.032313

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413