全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

杂化模式二聚体结构光电子发射研究
Study of Photoelectron Emission in Hybrid Mode Dimer Structures

DOI: 10.12677/app.2024.144016, PP. 131-141

Keywords: 等离激元模式,光电子发射,金纳米结构,时域有限差分法
Plasmon Mode
, Photoelectron Emission, Gold Nanostructures, Finite Difference Time Domain

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于金属纳米结构中的等离激元效应可以将周围电场局域在纳米级空间尺度范围中,并且有着出色的电场增强的能力,在增强光传导效应、提高超快电子源亮度、提升太阳能电池转化效率等方面都有着出色的潜力。本文使用非对称金纳米二聚体结构进行模拟,对等离激元杂化模式对光电子发射进行研究,发现金纳米短棒占据二聚体结构场增强的主导,当二聚体结构呈成键模式,短棒的Ez分量要强于长棒,反键模式中长棒的Ez分量要超过短棒,并将金纳米二聚体结构的间隙增加至200 nm时,在双棒的耦合作用足够小的情况下,分别对二者的近场进行研究,发现金纳米长棒中的Ez/E约是短棒的4倍左右,金纳米长棒的光电子产额是短棒的十倍左右。
Based on the plasmon effect in metal nanostructures, the surrounding electric field can be localized within the nanometer-scale spatial range, with excellent field enhancement capabilities. This has great potential in enhancing light conduction effects, improving the brightness of ultrafast electron sources, and increasing the efficiency of solar cell conversion. In this study, asymmetric gold nanorod dimer structures were simulated to investigate the plasmon hybrid mode on photoelectron emission. It was found that the gold nanorod played a dominant role in the field enhancement of the dimer structure, with the short rod having a stronger Ez component than the long rod in the bonding mode, while in the anti-bonding mode, the Ez component of the long rod exceeded that of the short rod. When the gap between the gold nanorod dimer structures was increased to 200 nm, and the coupling effect between the two rods was sufficiently small, the near-field of each rod was studied. It was observed that the Ez/E ratio in the gold nanorod long rod was about four times that of the short rod, and the photoelectron yield of the gold nanorod long rod was approximately ten times that of the short rods.

References

[1]  Keathley, P.D., Sell, A., Putnam, W.P., et al. (2013) Strong-Field Photoemission from Silicon Field Emitter Arrays. Annalen der Physik, 525, 144-150.
https://doi.org/10.1002/andp.201200189
[2]  Musumeci, P., Cultrera, L., Ferrario, M., et al. (2010) Multiphoton Photoemission from a Copper Cathode Illuminated by Ultrashort Laser Pulses in an rf Photoinjector. Physical Review Letters, 104, Article ID: 084801.
https://doi.org/10.1103/PhysRevLett.104.084801
[3]  Dowell, D.H, Bazarov, I., Dunham, B., et al. (2010) Cathode R&D for Future Light Sources. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 622, 685-697.
https://doi.org/10.1016/j.nima.2010.03.104
[4]  Orendorff, C.J., Sau, T.K. and Murphy, C.J. (2006) Shape-Dependent Plasmon-Resonant Gold Nanoparticles. Small, 2, 636-639.
https://doi.org/10.1002/smll.200500299
[5]  Sharma, V., Verma, D. and Okram, G.S. (2019) Influence of Surfactant, Particle Size and Dispersion Medium on Surface Plasmon Resonance of Silver Nanoparticles. Journal of Physics: Condensed Matter, 32, Article ID: 145302.
https://doi.org/10.1088/1361-648X/ab601a
[6]  Hommelhoff, P., Kling, M.F. (2015) Attosecond Nanophysics: From Basic Science to Applications. John Wiley & Sons, Hoboken.
https://doi.org/10.1002/9783527665624
[7]  Nordlander, P., Oubre, C., Prodan, E., Li, K. and Stockman, M.I. (2004) Plasmon Hybridization in Nanoparticle Dimers. Nano Letters, 4, 899-903.
https://doi.org/10.1021/nl049681c
[8]  Prodan, E., Radloff, C., Halas, N.J. and Nordlander, P. (2003) Hybridization Model for the Plasmon Response of Complex Nanostructures. Science, 302, 419-422.
https://doi.org/10.1126/science.1089171
[9]  Wang, L., Ji, B., Xu, Y., et al. (2023) Analysis of Dephasing Time of Plasmonic Hybridization Modes Using a Quasi-Normal Mode Method. Journal of the Optical Society of America B, 40, 178-186.
https://doi.org/10.1364/JOSAB.477505
[10]  Sun, Q., Yu, H., Ueno, K.,et al. (2016) Dissecting the Few-Femtosecond Dephasing Time of Dipole and Quadrupole Modes in Gold Nanoparticles Using Polarized Photoemission Electron Microscopy. ACS Nano, 10, 3835-3842.
https://doi.org/10.1021/acsnano.6b00715
[11]  Biagioni, P., Huang, J.S., Duò, L., et al. (2009) Cross Resonant Optical Antenna. Physical Review Letters, 102, Article ID: 256801.
https://doi.org/10.1103/PhysRevLett.102.256801
[12]  Kim, S., Jin, J., Kim, Y.-J., et al. (2008) High-Harmonic Generation by Resonant Plasmon Field Enhancement. Nature, 453, 757-760.
https://doi.org/10.1038/nature07012
[13]  Hutter, E. and Fendler, J.H. (2004) Exploitation of Localized Surface Plasmon Resonance. Advanced Materials, 16, 1685-1706.
https://doi.org/10.1002/adma.200400271
[14]  Zhang, X., Chen, Y.L., Liu, R.S., et al. (2013) Plasmonic Photocatalysis. Reports on Progress in Physics, 76, Article ID: 046401.
https://doi.org/10.1088/0034-4885/76/4/046401
[15]  Zhang, N., et al. (2015) Ultrabroadband Metasurface for Efficient Light Trapping and Localization: A Universal Surface-Enhanced Raman Spectroscopy Substrate for “All” Excitation Wavelengths. Advanced Materials Interfaces, 2, Article ID: 1500142.
https://doi.org/10.1002/admi.201500142
[16]  Wang, H., Brandl, D.W., et al. (2007) Plasmonic Nanostructures: Artificial Molecules. Accounts of Chemical Research, 40, 53-62.
https://doi.org/10.1021/ar0401045
[17]  Liu, Z., et al. (2015) Automatically Acquired Broadband Plasmonic-Metamaterial Black Absorber during the Metallic Film-Formation. ACS Applied Materials & Interfaces, 7, 4962-4968.
https://doi.org/10.1021/acsami.5b00056
[18]  Rohmer, M., Bauer, M., Leissner, T., et al. (2010) Time Resolved Photoelectron Nano Spectroscopy of Individual Silver Particles: Perspectives and Limitations. Physica Status Solidi B, 247, 1132-1138.
https://doi.org/10.1002/pssb.200945479
[19]  Dombi, P.T., H?rl, A., Rácz, P.T., et al. (2013) Ultrafast Strong-Field Photoemission from Plasmonic Nanostructures. Nano Letters, 13, 674-678.
https://doi.org/10.1021/nl304365e
[20]  Nakamura, T., Hirata, N., Sekino, Y., et al. (2010) Photoemission Enhancement Induced by Near-Fields via Local Surface Plasmon Resonance of Silver Nanostructures on a Hydrogen-Terminated Si(111) Surface. The Journal of Physical Chemistry C, 114, 16270-16277.
https://doi.org/10.1021/jp105515t
[21]  Hobbs, R.G., Yang, Y., Fallahi, A., Keathley, P.D., De Leo, E., Kartner, F.X., Graves, W.S. and Berggren, K.K. (2014) ACS Nano, 8, 11474-11482.
https://doi.org/10.1021/nn504594g
[22]  Ropers, C., Solli, D.R., Schulz, C.P., Lienau, C. and Elsaesser, T. (2007) Physical Review Letters, 98, Article ID: 043907.
https://doi.org/10.1103/PhysRevLett.98.043907
[23]  Schertz, F., Schmelzeisen, M., Mohammadi, R., Kreiter, M., Elmers, H.J. and Schonhense, G. (2012) Near Field of Strongly Coupled Plasmons: Uncovering Dark Modes. Nano Letters, 12, 1885-1890.
https://doi.org/10.1021/nl204277y
[24]  Li, Y., Peng, S., Wang, L., et al. (2023) Enhanced Photoelectron Emission from Dark Plasmon Mode in Gold Nanoring. Chinese Journal of Physics, 85, 104-111.
https://doi.org/10.1016/j.cjph.2023.06.017
[25]  Tsai, C.-Y., Wu, C.-Y., Chang, K.-H., et al. (2013) Slab Thickness Dependence of Localized Surface Plasmon Resonance Behavior in Gold Nanorings. Plasmonics, 8, 1011-1016.
https://doi.org/10.1007/s11468-013-9503-4
[26]  Johnson, P.B. and Christy, R.W. (1972) Optical Constants of the Noble Metals. Physical Review B, 6, 4370-4379.
https://doi.org/10.1103/PhysRevB.6.4370
[27]  Zhang, J., Xu, Y.-G., Zhang, J.-X., Guan, L.-L. and Li, Y.-F. (2020) Bright-Dark Mode Coupling Model of Plasmons. Chinese Physics Letters, 37, Article ID: 037101.
https://doi.org/10.1088/0256-307X/37/3/037101
[28]  季博宇. 飞秒局域等离激元相干控制的研究[D]: [博士学位论文]. 长春: 长春理工大学, 2017.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133