全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

PrAl2化合物磁熵变的研究
A Study on the Magnetic Entropy Change of PrAl2 Compounds

DOI: 10.12677/app.2024.144017, PP. 142-148

Keywords: 磁热效应,磁熵变,制冷能力
Magnetocaloric Effects
, Magnetic Entropy Change, Refrigerant Capacity

Full-Text   Cite this paper   Add to My Lib

Abstract:

我们采用电弧熔炼和真空退火的方式制备了PrAl2合金,通过测量该合金的等温磁化曲线,对其相变类型和磁热效应展开了研究。根据Arrot曲线确定了PrAl2合金的相变属于二级相变。依据等温磁化曲线计算了合金的磁熵变,在相同磁场下,在居里温度附近达到最大值。在50 kOe磁场中,合金的磁熵变和制冷能力分别为14.61 J/kg?K和175.33 J/kg。表明了PrAl2作为磁性制冷剂有着潜在的应用前景。
PrAl2 alloy was prepared by arc melting and vacuum annealing, and its phase transition type and magnetocaloric effect were studied by measuring its isothermal magnetization curve. According to the Arrow curve, the phase transition of PrAl2 alloy belongs to the second order phase transition. The magnetic entropy change of the alloy was calculated based on the isothermal magnetization curve, and reached its maximum value near the Curie temperature under the same magnetic field. In a magnetic field of 50 kOe, the magnetic entropy change and the refrigerant capacity of the alloy are 14.61 J/kg?K and 175.33 J/kg, respectively. This indicates that PrAl2 has potential application prospects as a magnetic refrigerant.

References

[1]  Tishin, A.M. and Spichkin, Y.I. (2014) Recent Progress in Magnetocaloric Effect: Mechanisms and Potential Applications. International Journal of Refrigeration, 37, 223-229.
https://doi.org/10.1016/j.ijrefrig.2013.09.012
[2]  De Sousa, V.S.R., Carvalho, A.M.G., Plaza, E.J.R., Alho, B.P., Tedesco, J.C.G., Coelho, A.A. and Von Ranke, P.J. (2011) Investigation on the Magnetocaloric Effect in (Gd, Pr) Al2 Solid Solutions. Journal of Magnetism and Magnetic Materials, 323, 794-798.
https://doi.org/10.1016/j.jmmm.2010.10.046
[3]  Llamazares, J.S., Zamora, J., Sánchez-Valdés, C.F. and álvarez-Alonso, P. (2020) Design and Fabrication of a Cryogenic Magnetocaloric Composite by Spark Plasma Sintering Based on the RAl2 Laves Phases (R= Ho, Er). Journal of Alloys and Compounds, 831, Article ID: 154779.
https://doi.org/10.1016/j.jallcom.2020.154779
[4]  Jesla, P.K., Chelvane, J.A., Morozkin, A.V., Nigam, A.K. and Nirmala, R. (2021) Magnetic and Transport Properties of Multicomponent Laves Phase Intermetallic Compound Gd0.2Tb0.2Dy0.2Ho0.2Er0.2Al2. IEEE Transactions on Magnetics, 58, 1-4.
https://doi.org/10.1109/TMAG.2021.3088470
[5]  Ohashi, M., Nagare, M., Adachi, Y., Kobayashi, K., Miyagawa, H., Oomi, G. and Shirasaki, K. (2020) Effect of Pressure on the Electrical Resistivity of Ce1-XErxAl2 Spin Glass. Journal of the Physical Society of Japan, 89, Article ID: 074708.
https://doi.org/10.7566/JPSJ.89.074708
[6]  ?lebarski, A. and Deniszczyk, J. (2022) Experimental Evidence for Fractional Valence of La in LaAl2: Electronic Structure from X-Ray Photoelectron Spectroscopy and Band Structure Calculations. Physical Review B, 105, Article ID: 245154.
https://doi.org/10.1103/PhysRevB.105.245154
[7]  Hill, R.W. and Da Silva, J.M. (1969) The Low Temperature Heat Capacity of CeAl2. Physics Letters A, 30, 13-14.
https://doi.org/10.1016/0375-9601(69)90010-3
[8]  Abell, J.S., Del Moral, A., Ibarra, R.M. and Lee, E.W. (1983) The Magnetostriction of PrAl2 and TbAl2. Journal of Physics C: Solid State Physics, 16, 769.
https://doi.org/10.1088/0022-3719/16/4/020
[9]  Gschneidner, K.A., Takeya, H., Moorman, J.O. and Pecharsky, V.K. (1994) (Dy0.5Er0.5) Al2: A Large Magnetocaloric Effect Material for Low-Temperature Magnetic Refrigeration. Applied Physics Letters, 64, 253-255.
https://doi.org/10.1063/1.111520
[10]  Tedesco, J.C., Carvalho, A.M.G., Christensen, N.B., Kockelmann, W., Telling, M.T., Yokaichiya, F. and Bordallo, H.N. (2015) Analysis of the Crystallographic and Magnetic Structures of the Tb0.1Pr0.9Al2 and Tb0.25Pr0.75Al2 Magnetocaloric Compounds by Means of Neutron Scattering. Journal of Materials Science, 50, 2884-2892.
https://doi.org/10.1007/s10853-015-8851-1
[11]  Yamada, H., Inoue, J., Terao, K., Kanda, S. and Shimizu, M. (1984) Electronic Structure and Magnetic Properties of YM2 Compounds (M = Mn, Fe, Co and Ni). Journal of Physics F: Metal Physics, 14, 1943.
https://doi.org/10.1088/0305-4608/14/8/023
[12]  Bloch, D., Edwards, D.M., Shimizu, M. and Voiron, J. (1975) First Order Transitions in ACo2 Compounds. Journal of Physics F: Metal Physics, 5, 1217.
https://doi.org/10.1088/0305-4608/5/6/022
[13]  刘懿德, 时阳光. 亚铁磁 Er(Co1?XFex)2的宽温域磁热效应[J]. 应用物理, 2019, 9(12): 511-517.
[14]  邱俊婷, 戴键, 时阳光. Dy(Co0.5Ni0.5)2合金磁熵变的研究[J]. 应用物理, 2021, 11(3): 166-171.
[15]  Olsen, C.E., Arnold, G. and Nereson, N. (1967) Magnetic Properties of PrAl2. Journal of Applied Physics, 38, 1395-1396.
https://doi.org/10.1063/1.1709636
[16]  Zheng, T.F., Shi, Y.G., Hu, C.C., Fan, J.Y., Shi, D.N., Tang, S.L. and Du, Y.W. (2012) Magnetocaloric Effect and Transition Order of Mn5Ge3 Ribbons. Journal of Magnetism and Magnetic Materials, 324, 4102-4105.
https://doi.org/10.1016/j.jmmm.2012.07.031
[17]  Wood, M.E. and Potter, W.H. (1985) General Analysis of Magnetic Refrigeration and Its Optimization Using a New Concept: Maximization of Refrigerant Capacity. Cryogenics, 25, 667-683.
https://doi.org/10.1016/0011-2275(85)90187-0
[18]  Inoue, J. and Shimizu, M. (1988) First-and Second-Order Magnetic Phase Transitions in (RY) Co2 and R(Co-Al)2 (R = Heavy Rare-Earth Element) Compounds. Journal of Physics F: Metal Physics, 18, 2487.
https://doi.org/10.1088/0305-4608/18/11/020
[19]  Brommer, P.E. (1989) A Generalization of the Inoue-Shimizu Model. Physica B: Condensed Matter, 154, 197-202.
https://doi.org/10.1016/0921-4526(89)90068-9
[20]  Inoue, J. and Shimizu, M. (1982) Volume Dependence of the First-Order Transition Temperature for RCo2 Compounds. Metal Physics, 12, 1811.
https://doi.org/10.1088/0305-4608/12/8/021
[21]  Gschneidner, K.A. and Pecharsky, V.K. (2000) Magnetocaloric Materials. Annual Review of Materials Science, 30, 387-429.
https://doi.org/10.1146/annurev.matsci.30.1.387

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133