全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

蛋白结合毒素清除材料的研究进展
Research Progress on Protein-Bound Toxin Removal Materials

DOI: 10.12677/cc.2023.74004, PP. 33-40

Keywords: 蛋白结合毒素,吸附材料,血液灌流,血液透析
Protein-Bound Toxins
, Adsorbent Materials, Hemoperfusion, Hemodialysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着平均寿命的上升,慢性肾脏病患者的人数与比例都在逐年增加。蛋白结合毒素已被证明是诱发多种尿毒症并发症的关键因素,而且传统血液透析无法对蛋白结合毒素产生良好的清除效果。近年来,有关蛋白结合毒素清除材料的研究呈增多趋势,本文将基于应用于血液透析与血液灌流的吸附材料两种类型来进行综述。
As the average life expectancy increases, the number and proportion of patients with chronic kidney disease are increasing year by year. Protein-bound toxins have been shown to be a key factor in inducing a variety of uremic complications, and traditional hemodialysis cannot produce a good removal effect on protein-bound toxins. In recent years, research on protein-bound toxin removal materials has been increasing. This article will review based on two types of adsorbent materials used in hemodialysis and hemoperfusion.

References

[1]  Coresh, J. (2017) Update on the Burden of CKD. Journal of the American Society of Nephrology, 28, 1020-1022.
https://doi.org/10.1681/ASN.2016121374
[2]  Sirich, T.L., Meyer, T.W., Gondouin, B., Brunet, P. and Niwa, T. (2014) Protein-Bound Molecules: A Large Family with a Bad Character. Seminars in Nephrology, 34, 106-117.
https://doi.org/10.1016/j.semnephrol.2014.02.004
[3]  Fujii, H., Goto, S. and Fukagawa, M. (2018) Role of Uremic Toxins for Kidney, Cardiovascular, and Bone Dysfunction. Toxins (Basel), 10, Article No. 202.
https://doi.org/10.3390/toxins10050202
[4]  Rosner, M.H., Reis, T., Husain-Syed, F., Vanholder, R., Hutchison, C., Stenvinkel, P., Blankestijn, P.J., Cozzolino, M., Juillard, L., Kashani, K., et al. (2021) Classification of Uremic Toxins and Their Role in Kidney Failure. Clinical Journal of the American Society of Nephrology: CJASN, 16, 1918-1928.
https://doi.org/10.2215/CJN.02660221
[5]  Sirich, T.L. and Meyer, T.W. (2018) Intensive Hemodialysis Fails to Reduce Plasma Levels of Uremic Solutes. Clinical Journal of the American Society of Nephrology, 13, 361-362.
https://doi.org/10.2215/CJN.00950118
[6]  Lekawanvijit, S., Kompa, A.R. and Krum, H. (2016) Protein-Bound Uremic Toxins: A Long Overlooked Culprit in Cardiorenal Syndrome. American Journal of Physiology-Renal Physiology, 311, F52-F62.
https://doi.org/10.1152/ajprenal.00348.2015
[7]  Lekawanvijit, S., Kompa, A.R., Manabe, M., Wang, B.H., Langham, R.G., Nishijima, F., et al. (2012) Chronic Kidney Disease-Induced Cardiac Fibrosis Is Ameliorated by Reducing Circulating Levels of a Non-Dialysable Uremic Toxin, Indoxyl Sulfate. PLOS ONE, 7, E41281.
https://doi.org/10.1371/journal.pone.0041281
[8]  Lin, C.J., Wu, V., Wu, P.C. and Wu, C.J. (2015) Meta-Analysis of the Associations of P-Cresyl Sulfate (P-Cresyl Sulfate) and Indoxyl Sulfate (IS) with Cardiovascular Events and All-Cause Mortality in Patients with Chronic Renal Failure. PLOS ONE, 10, E0132589.
https://doi.org/10.1371/journal.pone.0132589
[9]  Yamamoto, S., Kazama, J.J., Wakamatsu, T., Takahashi, Y., Kaneko, Y., Goto, S. and Narita, I. (2016) Removal of Uremic Toxins by Renal Replacement Therapies: A Review of Current Progress and Future Perspectives. Renal Replacement Therapy, 2, Article No. 43.
https://doi.org/10.1186/s41100-016-0056-9
[10]  Lesaffer, G., De Smet, R., Lameire, N., Dhondt, A., Duym, P. and Vanholder, R. (2000) Intradialytic Removal of Protein-Bound Uraemic Toxins: Role of Solute Characteristics and of Dialyser Membrane. Nephrology Dialysis Transplantation, 15, 50-57.
https://doi.org/10.1093/ndt/15.1.50
[11]  Ronco, C., Ghezzi, P.M. and Bowry, S.K. (2004) Membranes for Hemodialysis. In: H?rl, W.H., Koch, K.M., Lindsay, R.M., Ronco, C. and Winchester, J.F., Eds., Replacement of Renal Function by Dialysis, Springer, Dordrecht, 301-323.
https://doi.org/10.1007/978-1-4020-2275-3_13
[12]  Krieter, D.H. and Canaud, B. (2003) High Permeability of Dialysis Membranes: What Is the Limit of Albumin Loss? Nephrology Dialysis Transplantation, 18, 651-654.
https://doi.org/10.1093/ndt/gfg054
[13]  Botella, J., Ghezzi, P.M. and Sanz-Moreno, C. (2000) Sorbents in Hemodialysis. Kidney International, 58, S60-S65.
https://doi.org/10.1046/j.1523-1755.2000.07607.x
[14]  Ghezzi, P.M., Dutto, A., Gervasio, R. and Botella, J. (1989) Hemodiafiltration with Separate Convection and Diffusion: Paired Filtration Dialysis. Clinical Nephrology, 69, 141-161.
https://doi.org/10.1159/000416756
[15]  Wratten, M.L. and Ghezzi, P.M. (2007) Hemodiafiltration with Endogenous Reinfusion. Hemodiafiltration, 158, 94-102.
https://doi.org/10.1159/000107239
[16]  Aucella, F. (2012) Hemodiafiltration with Endogenous Reinfusion. Hemodiafiltration, 29, S72-S82.
[17]  Grandi, F., Bolasco, P., Palladino, G., Sereni, L., Caiazzo, M., Atti, M. and Ghezzi, P.M. (2012) Adsorption in Extracorporeal Blood Purification: How to Enhance Solutes Removal beyond Diffusion and Convection. In: Suzuki, H., Ed., Hemodialysis, IntechOpen, London.
https://doi.org/10.5772/52272
[18]  Cuoghi, A., Caiazzo, M., Monari, E., Bellei, E., Bergamini, S., Sereni, L., Aucella, F., Loschiavo, C., Atti, M. and Tomasi, A. (2015) New Horizon in Dialysis Depuration: Characterization of a Polysulfone Membrane Able to Break the “Albumin Wall”. Journal of Biomaterials Applications, 29, 1363-1371.
https://doi.org/10.1177/0885328214565651
[19]  Monari, E., Cuoghi, A., Bellei, E., Bergamini, S., Caiazzo, M., Aucella, F., Loschiavo, C., Corazza, L., Palladino, G., Sereni, L., et al. (2015) Proteomic Analysis of Protein Extraction during Hemofiltration with On-Line Endogenous Reinfusion (HFR) Using Different Polysulphone Membranes. Journal of Materials Science: Materials in Medicine, 26, Article No. 140.
https://doi.org/10.1007/s10856-015-5398-2
[20]  Martinez, A.W., Recht, N.S., Hostetter, T.H. and Meyer, T.W. (2005) Removal of P-Cresol Sulfate by Hemodialysis. Journal of the American Society of Nephrology, 16, 3430-3436.
https://doi.org/10.1681/ASN.2005030310
[21]  Itoh, Y., Ezawa, A., Kikuchi, K., Tsuruta, Y. and Niwa, T. (2012) Protein-Bound Uremic Toxins in Hemodialysis Patients Measured by Liquid Chromatography/Tandem Mass Spectrometry and Their Effects on Endothelial ROS Production. Analytical and Bioanalytical Chemistry, 403, 1841-1850.
https://doi.org/10.1007/s00216-012-5929-3
[22]  Basile, C., Libutti, P., Di Turo, A.L., Casino, F.G., Vernaglione, L., Tundo, S., Maselli, P., De Nicolo, E.V., Ceci, E., Teutonico, A., et al. (2011) Removal of Uraemic Retention Solutes in Standard Bicarbonate Haemodialysis and Long-Hour Slow-Flow Bicarbonate Haemodialysis. Nephrology Dialysis Transplantation, 26, 1296-1303.
https://doi.org/10.1093/ndt/gfq543
[23]  Krieter, D.H., Hackl, A., Rodriguez, A., Chenine, L., Moragues, H.L., Lemke, H.D., Wanner, C. and Canaud, B. (2010) Protein-Bound Uraemic Toxin Removal in Haemodialysis and Post-Dilution Haemodiafiltration. Nephrology Dialysis Transplantation, 25, 212-218.
https://doi.org/10.1093/ndt/gfp437
[24]  Meyer, T.W., Peattie, J.W., Miller, J.D., Dinh, D.C., Recht, N.S., Walther, J.L. and Hostetter, T.H. (2007) Increasing the Clearance of Protein-Bound Solutes by Addition of A Sorbent to the Dialysate. Journal of the American Society of Nephrology, 18, 868-874.
https://doi.org/10.1681/ASN.2006080863
[25]  Li, J., Han, L., Liu, S., He, S., Cao, Y., Xie, J. and Jia, L. (2018) Removal of Indoxyl Sulfate by Water-Soluble Poly-Cyclodextrins in Dialysis. Colloids and Surfaces B: Biointerfaces, 164, 406-413.
https://doi.org/10.1016/j.colsurfb.2018.01.056
[26]  Shen, Y., Shen, Y., Li, J., Ding, F. and Wang, Y. (2022) Polyethyleneimine-Anchored Liposomes as Scavengers for Improving the Efficiency of Protein-Bound Uremic Toxin Clearance during Dialysis. Journal of Biomedical Materials Research Part A, 110, 976-983.
https://doi.org/10.1002/jbm.a.37346
[27]  Liu, Y., Li, G., Han, Q., Lin, H., Deng, G., Li, Q. and Liu, F. (2023) Designing Adsorptive Membranes for Removing Protein-Bound Uremic Toxins via π-π and Cation-π Interaction. Journal of Membrane Science, 676, Article ID: 121584.
https://doi.org/10.1016/j.memsci.2023.121584
[28]  Yen, S.C., Liu, Z.W., Juang, R.S., Sahoo, S., Huang, C.H., Chen, P., Hsiao, Y.S. and Fang, J.T. (2019) Carbon Nanotube/Conducting Polymer Hybrid Nanofibers as Novel Organic Bioelectronic Interfaces for Efficient Removal of Protein-Bound Uremic Toxins. ACS Applied Materials & Interfaces, 11, 43843-43856.
https://doi.org/10.1021/acsami.9b14351
[29]  Liu, Y., Peng, X., Hu, Z., Yu, M., Fu, J. and Huang, Y. (2021) Fabrication of a Novel Nitrogen-Containing Porous Carbon Adsorbent for Protein-Bound Uremic Toxins Removal. Materials Science & Engineering C-Materials for Biological Applications, 121, Article ID: 111879.
https://doi.org/10.1016/j.msec.2021.111879
[30]  Zhao, R., Ma, T., Cui, F., Tian, Y. and Zhu, G. (2020) Porous Aromatic Framework with Tailored Binding Sites and Pore Sizes as a High-Performance Hemoperfusion Adsorbent for Bilirubin Removal. Advanced Science (Weinh), 7, Article ID: 2001899.
https://doi.org/10.1002/advs.202001899
[31]  Chao, Z., Li, J., Jiang, W., Zhang, C., Ji, J., Hua, X., Xu, L., Han, L. and Jia, L. (2021) Hemocompatible MOF-Decorated Pollen Hemoperfusion Absorbents for Rapid and Highly Efficient Removal of Protein-Bound Uremic Toxins. Materials Chemistry Frontiers, 5, 7617-7627.
https://doi.org/10.1039/D1QM01071A
[32]  Wu, K., Yang, W., Jiao, Y. and Zhou, C. (2017) A Surface Molecularly Imprinted Electrospunpolyethersulfone (PES) Fiber Mat for Selective Removal of Bilirubin. Journal of Materials Chemistry B, 5, 5763-5773.
https://doi.org/10.1039/C7TB00643H
[33]  Yang, Y., Yin, S., He, C., Wu, X., Yin, J., Zhang, J., Ma, L., Zhao, W., Cheng, C. and Zhao, C. (2020) Construction of Kevlar Nanofiber/Graphene Oxide Composite Beads as Safe, Self-Anticoagulant, and Highly Efficient Hemoperfusion Adsorbents. Journal of Materials Chemistry B, 8, 1960-1970.
https://doi.org/10.1039/C9TB02789K
[34]  Xu, K., Cao, L., Wang, Z. and Chen, L.P. (2023) Heparin-Mimetic Chitooligosaccharides-Based Monoliths Obtained from C/W Emulsions: Hemocompatibility and Toxin Removal Ability. ACS Biomaterials Science & Engineering, 9, 5610-5621.
https://doi.org/10.1021/acsbiomaterials.3c00833
[35]  Cai, N., Li, Q., Zhang, J., Xu, T., Zhao, W., Yang, J. and Zhang, L. (2017) Antifouling Zwitterionic Hydrogel Coating Improves Hemocompatibility of Activated Carbon Hemoadsorbent. Journal of Colloid and Interface Science, 503, 168-177.
https://doi.org/10.1016/j.jcis.2017.04.024
[36]  Li, Q., Yang, J., Cai, N., Zhang, J., Xu, T., Zhao, W., Guo, H., Zhu, Y. and Zhang, L. (2019) Hemocompatible Hemo Adsorbent for Effective Removal of Protein-Bound Toxin in Serum. Journal of Colloid and Interface Science, 555, 145-156.
https://doi.org/10.1016/j.jcis.2019.07.045

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133