全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

使用十字纳米结构实现表面等离激元定向发射的超快时空控制
Ultrafast Spatiotemporal Control of Directional Launching of Surface Plasmon Polaritons Using Cross Nanostructures

DOI: 10.12677/app.2024.144018, PP. 149-156

Keywords: 飞秒传输表面等离激元,偏振控制,超快时空控制
Femtosecond Propagating Surface Plasmon
, Polarization Control, Ultrafast Spatiotemporal Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

飞秒传输表面等离激元(femtosecond propagating surface plasmon, fs-PSP)的超快时空控制是光子纳米电路元件中超快信息处理的先决条件。目前多数的研究都是集中在对SPP空间传输方向上的操控,大多集中于在空间场中实现SPP的优先发射方向的主动控制,在时间尺度实现对SPP超快调控的研究相对较少,通过使用纳米定向耦合器实现对SPP优先发射方向的超快时空调控研究几乎未见报道,在这里,利用时域有限差分(FDTD)进行仿真,研究了两种相关结构的表面等离激元的超快时空操控,解决了SPP发射方向的单一性问题,增加其超快切换方向的自由度。这项成果对优化现有的等离激元纳米电路组件中超快信息处理系统乃至拓宽其应用领域具有重要的推动作用。
Ultrafast spatiotemporal control of femtosecond propagating surface plasmons (fs-PSPs) is a prerequisite for achieving ultrafast information processing in photonic nanocircuit components. Currently, most research focuses on manipulating the spatial direction of SPP transmission. In contrast, relatively little research has been done on actively controlling the preferred launch direction of SPPs on the time scale. The study of ultrafast spatiotemporal modulation of SPP’s preferred emission direction through nano-directional couplers has hardly been reported. Here, the ultrafast spatiotemporal manipulation of the surface plasmon of two related structures is investigated by simulation using finite-difference time-domain (FDTD) simulations, which solves the problem of the singularity of the emission direction of the SPP and increases the degree of freedom of its ultrafast switching direction. This result is an important contribution to the optimization of the existing ultrafast information processing system in plasma nanocircuit components and even to the broadening of its application areas.

References

[1]  Qin, Y., Ji, B., Song, X., et al. (2021) Ultrafast Spatiotemporal Control of Directional Launching of Surface Plasmon Polaritons in a Plasmonic Nano Coupler. Photonics Research, 9, 514-520.
https://doi.org/10.1364/PRJ.416633
[2]  Guo, Q.R., Zhang, C. and Hu, X.H. (2016) A Spiral Plasmonic Lens with Directional Excitation of Surface Plasmons. Scientific Reports, 6, Article No. 32345.
https://doi.org/10.1038/srep32345
[3]  Jin, J.J., Li, X., Guo, Y.H., et al. (2019) Polarization-Controlled Unidirectional Excitation of Surface Plasmon Polaritons Utilizing Catenary Apertures. Nanoscale, 11, 3952-3957.
[4]  Sinev, I., Komissarenko, F., Bogdanov, A., et al. (2018) Switchable Directional Excitation Surface Plasmon Polaritons with Dielectric Nanoantennas. Journal of Physics: Conference Series, 1092, Article ID: 012140.
https://doi.org/10.1088/1742-6596/1092/1/012140
[5]  Huang, T., Wang, J., Liu, W., et al. (2017) Spin-Controlled Directional Launching of Surface Plasmons under Oblique Illumination. Plasmonics, 12, 729-734.
https://doi.org/10.1007/s11468-016-0319-x
[6]  Yao, S.Y., Guo, Z.Y., Sun, H.Q. and Huang, H.Y. (2018) Excitation of Direction-Tunable Surface Plasmon Polaritons by Using a Rectangular Array of Silver Nanodisks. Optics Express, 26, 20102-20110.
https://doi.org/10.1364/OE.26.020102
[7]  Dabrowski, M., et al. (2016) Multiphoton Photoemission Microscopy of High-Order Plasmonic Resonances at the Ag/Vacuum and Ag/Si Interfaces of Epitaxial Silver Nanowires. ACS Photonics, 3, 1704-1713.
https://doi.org/10.1021/acsphotonics.6b00353
[8]  Qin, Y., Ji, B., Song, X., et al. (2021) Efficient Plasmonic Functional Lens Constructed via a Nano-Dichroic Element. Journal of the Optical Society of America, B. Optical Physics, 38, C58-C62.
https://doi.org/10.1364/JOSAB.427300
[9]  Lin, J., Mueller, J.P.B., Wang, Q., et al. (2013) Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons. Science, 340, 331-33.
[10]  Zhou, H., Qie, J., Dong, J., et al. (2018) Arbitrary Spin-Controlled Directional Coupling of Surface Plasmon Polaritons.
[11]  Liu, Y., Palomba, S., Park, Y., et al. (2012) Compact Magnetic Antennas for Directional Excitation of Surface Plasmons. Nano Letters, 12, 4853-4858.
[12]  Zhao, Z.L., Ji, B.Y., Wang, G.Q., et al. (2021) Symmetrical Double-Groove Structure as a Broadband Plasmonic Polarization Multiplexer. Optical Materials Express, 11, 2806-2816.
https://doi.org/10.1364/OME.428035
[13]  Huang, F., Jiang, X., Yang, H., et al. (2016) Tunable Directional Coupling of Surface Plasmon Polaritons with Linearly Polarized Light. Applied Physics B, 122, Article No. 16.
https://doi.org/10.1007/s00340-015-6306-7
[14]  Li, X., Tan, Q., Bai, B., et al. (2011) Experimental Demonstration of Tunable Directional Excitation of Surface Plasmon Polaritons with a Subwavelength Metallic Double Slit. Applied Physics Letters, 98, Article ID: 251109.
https://doi.org/10.1063/1.3602322
[15]  Pisano, E., Garcia-Ortiz, C.E., Armenta-Monzon, F., et al. (2018) Efficient and Directional Excitation of Surface Plasmon Polaritons by Oblique Incidence on Metallic Ridges. Plasmonics, 13, 1935-1940.
https://doi.org/10.1007/s11468-018-0708-4
[16]  Huang, X. and Brongersma, M.L. (2013) Compact Aperiodic Metallic Groove Arrays for Unidirectional Launching of Surface Plasmons. Nano Letters, 13, 5420-5424.
https://doi.org/10.1021/nl402982u
[17]  Wu, Z. (2019) Polarization Controlled Couplings of Surface Plasmon with Asymmetrical Nanoslit Pairs. Current Applied Physics: The Official Journal of the Korean Physical Society, 19, 928-932.
https://doi.org/10.1016/j.cap.2019.04.008
[18]  Tyagi, D., Chen, T.Y. and Huang, C.-B. (2020) Polarization—Enabled Steering of Surface Plasmons Using Crossed Reciprocal Nanoantennas. Laser & Photonics Review, 14, Article ID: 2000076.
https://doi.org/10.1002/lpor.202000076
[19]  Gramotnev, D.K. and Bozhevolnyi, S.I. (2010) Plasmonics beyond the Diffraction Limit. Nature Photonics, 4, 83-91.
https://doi.org/10.1038/nphoton.2009.282
[20]  Wang, Y.L., Ming, C.J., Zhang, Y.Q., et al. (2020) Spatiotemporal Manipulation on Focusing and Propagation of Surface Plasmon Polariton Pulses. Optics Express, 28, 33516-33527.
https://doi.org/10.1364/OE.405803
[21]  Aeschlimann, M., Bauer, M., Bayer, D., et al. (2010) Spatiotemporal Control of Nanooptical Excitations. Proceedings of the National Academy of Sciences of the United States of America, 107, 5329-5333.
https://doi.org/10.1073/pnas.0913556107
[22]  Johnson, B.P. and Christy, W.R. (1972) Optical Constants of the Noble Metals. Physical Review B, 6, 4370-4379.
https://doi.org/10.1103/PhysRevB.6.4370

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133