全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Natural Gas Power Plants in the System Security Role—The Situation and Solutions in Brazil

DOI: 10.4236/epe.2024.164008, PP. 151-178

Keywords: Component, Formatting, Style, Styling, Insert

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study aims to apply a methodology to analyze the regulatory obstacles for the development of thermal power plants in a country. The study uses Brazil as an application case, although mostly of the findings can be useful to other countries. It also discusses other policies and actions by the government that may contribute to the growth of natural gas-fired power plants. Using deductive and comparative research methods, the first part of this method focuses on the stage of thermoelectric power generation in Brazil. The subsequent sections present the role of the integration of gas and electricity sectors, the main obstacles to the expansion of natural-gas power generation, how the country has deal with the expansion of natural-gas power generation, as well as how other obstacles has been faced. In raising the research question, when comparing the research results of selected countries, it should be noticed the impact that the experience and lessons elsewhere have had on policies formulation on Brazil. Our conclusions pointed out that adequate policies for the natural gas-electricity Brazilian market integration make advisable the unification of electricity and natural gas agencies. We recommended developing a mathematical model to support decision-making on natural gas and electricity integration.

References

[1]  Chen, R., Zhu, B. and Duan, T. (2020) Role of Natural Gas Power Generation in China’s Energy Transformation and Suggestions on Its Development. Natural Gas Industry, 40, 120-128.
[2]  Lin, J. and Mou, D. (2021) Analysis of the Optimal Spatial Distribution of Natural Gas under ‘Tran-Sition from Coal to Gas’ in China. Resource and Energy Economics, 66, Article 101259.
https://doi.org/10.1016/j.reseneeco.2021.101259
[3]  Tolmasquim, M.T. (2016) Thermoelectric Energy: Natural Gas, Biomass, Coal, Nuclear. Empresa de Pesquisa Energética (EPE), Rio de Janeiro.
[4]  Zhang, B.J., Tang, Q.Q., Zhao, Y., Chen, Y.Q., Chen, Q.L. and Floudas, C.A. (2018) Multi-Level Energy Integration between Units, Plants and Sites for Natural Gas Industrial Parks. Renewable and Sustainable Energy Reviews, 88, 1-15.
https://doi.org/10.1016/j.rser.2018.02.015
[5]  Hafezi, R., Akhavan, A., Pakseresht, S. and Wood, D.A. (2021) Global Natural Gas Demand to 2025: A Learning Scenario Development Model. Energy, 224, Article 120167.
https://doi.org/10.1016/j.energy.2021.120167
[6]  He, P. and Ni, X. (2022) Renewable Energy Sources in the Era of the Fourth Industrial Revolution: A Perspective of Civilization Development. Journal of Physics: Conference Series, 2301, Article 012030.
https://doi.org/10.1088/1742-6596/2301/1/012030
[7]  Nan, L., Wu, L., Liu, T., Liu, Y. and He, C. (2020) Vulnerability Identification and Evaluation of Interdependent Natural Gas-Electricity Systems. IEEE Transactions on Smart Grid, 11, 3558-3569.
https://doi.org/10.1109/tsg.2020.2968178
[8]  Luo, N., Li, M. and Yu, X. (2020) Natural Gas Power Generation Trends from a Technological Paradigm Perspective. Journal of Physics: Conference Series, 1549, Article 042144.
https://doi.org/10.1088/1742-6596/1549/4/042144
[9]  Yang, J., Rizvi, S.K.A., Tan, Z., Umar, M. and Koondhar, M.A. (2021) The Competing Role of Natural Gas and Oil as Fossil Fuel and the Non-Linear Dynamics of Resource Curse in Russia. Resources Policy, 72, Article 102100.
https://doi.org/10.1016/j.resourpol.2021.102100
[10]  Hashimoto, S. (2021) Why Doesn’t Japan Have a Natural Gas Pipeline Network? Consideration from the Determinant of the Choice between LNG Tank Trucks and Pipelines. International Journal of Energy Economics and Policy, 11, 346-353.
https://doi.org/10.32479/ijeep.11049
[11]  Wu, L. (2019) Forecasting Natural Gas Production and Consumption Using Grey Model with Latent Information Function: The Cases of China and USA. Scientia Iranica, 28, 386-394.
https://doi.org/10.24200/sci.2019.5378.1240
[12]  Ministério de Minas e Energia (MME) and Empresa de Pesquisa Energética (EPE) (2020) Plano Decenal De Expansão De Energia 2029. Brasília.
[13]  García Kerdan, I., Jalil-Vega, F., Toole, J., Gulati, S., Giarola, S. and Hawkes, A. (2019) Modelling Cost-Effective Pathways for Natural Gas Infrastructure: A Southern Brazil Case Study. Applied Energy, 255, Article 113799.
https://doi.org/10.1016/j.apenergy.2019.113799
[14]  Larizzatti Zacharias, L.G., Antunes Costa De Andrade, A.C., Guichet, X., Mouette, D. and Peyerl, D. (2022) Natural Gas as a Vehicular Fuel in Brazil: Barriers and Lessons to Learn. Energy Policy, 167, Article 113056.
https://doi.org/10.1016/j.enpol.2022.113056
[15]  Udemba, E.N. and Tosun, M. (2022) Energy Transition and Diversification: A Pathway to Achieve Sustainable Development Goals (SDGs) in Brazil. Energy, 239, Article 122199.
https://doi.org/10.1016/j.energy.2021.122199
[16]  Brito, T.L.F., Galvão, C., Fonseca, A.F., Costa, H.K.M. and Moutinho Dos Santos, E. (2022) A Review of Gas-to-Wire (GtW) Projects Worldwide: State-of-Art and Developments. Energy Policy, 163, Article 112859.
https://doi.org/10.1016/j.enpol.2022.112859
[17]  Coelho Junior, L.M., Fonseca, A.J.D.S., Castro, R., Mello, J.C.D.O., Santos, V.H.R.D., Pinheiro, R.B., Sousa, W.L., Santos Júnior, E.P. and Ramos, D.S. (2022) Empirical Evidence of the Cost of Capital under Risk Conditions for Thermoelectric Power Plants in Brazil. Energies, 15, Article 4313.
https://doi.org/10.3390/en15124313
[18]  Junior, L.M.C., Junior, E.P.S., Nunes, A.M.M., Simioni, F.J., Abrahao, R. and Junior, P.R. (2020) Concentration and Spatial Clustering of Forest-Based Thermoelectric Plants in Brazil. IEEE Access, 8, 221932-221941.
https://doi.org/10.1109/access.2020.3042945
[19]  Operador Nacional do Sistema Elétrico (ONS) (2021) Nota à imprensa—Esclare-cimentos em relação à nota técnica sobre avaliação das condições de atendimento eletroenergético. Brasília.
https://www.ons.org.br/Paginas/Noticias/Nota-a-imprensa-Esclarecimentos-em-relacao-a-nota-tecnica-Avaliacao-das-Condicoes-de-Atendimento-Eletroenergetico-do-SIN.aspx
[20]  Sousa, D.S., Neves, C.F., Silva, H.V.O., Schaffel, S.B., Luigi, G. and La Rovere, E.L. (2022) A Systemic Approach for Climate Risk Assessment Applied to Thermoelectric Power Plants in Northeastern Coast of Brazil. Climate Risk Management, 36, Article 100424.
https://doi.org/10.1016/j.crm.2022.100424
[21]  Bezutti, N. (2021) The Greater the Thermal Availability, the Greater the Charge Value. MEGAWhat, São Paulo.
https://megawhat.energy/noticias/politica-energetica/143064/quanto-maior-disponibilidade-termi-ca-maior-valor-do-encargo-indica-analise-da-megawhat?utm_campaign=crise_hidrica&utm_medium=email&utm_source=RD Station
[22]  De Castro Junior, D.J., De Almeida Costa, C.I., De Almeida Campos, R.B., Bonaldi, E.L., De Oliveira Assunção, F., Lambert-Torres, G., De Farias, R.S., Rossetto, R.R. and De Jesus, A.A.G. (2021) Virtual Reality Applied in a Thermoelectric Power Plant Planning. Brazilian Archives of Biology and Technology, 64, e21210138.
https://doi.org/10.1590/1678-4324-202121013
[23]  Goldenberg, J. and Prado, L.T.S. (2003) Reform and Crisis of the Electricity Sector in the FHC Period. Tempo Social, 15, 219-235.
https://doi.org/10.1590/s0103-20702003000200009
[24]  International Renewable Energy Agency (IRENA) (2018) Power System Flexibility for the Energy Transition, Part 1: Overview for Policy Makers. Abu Dhabi.
[25]  Robinson, J., DiChristopher, T., Micek, K. and Watson, M. (2022) Renewables Capturing Market from Gas-Fired Generation.
https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/electric-power/060821-natural-gas-in-transition-renewables-capturing-market-from-gas-fired-generation
[26]  Borriello, A., Burke, P.F. and Rose, J.M. (2021) If One Goes up, Another Must Come down: A Latent Class Hybrid Choice Modelling Approach for Understanding Electricity Mix Preferences among Renewables and Non-Renewables. Energy Policy, 159, Article 112611.
https://doi.org/10.1016/j.enpol.2021.112611
[27]  Directorate-General for Energy (2019) Potentials of Sector Coupling for Decarbonisation: Assessing Regulatory Barriers in Linking the Gas and Electricity Sectors in the EU: Final Report. European Commission, Brussels.
https://doi.org/10.2833/000080
[28]  Chang, J.W., Aydin, M.G., Pfeifenberger, J., Spees, K. and Pedtke, J.I. (2017) Advancing Past “Baseload” to a Flexible Grid How Grid Planners and Power Markets Are Better Defining System Needs to Achieve a Cost-Effective and Reliable Supply Mix. The Brattle Group, Inc.
[29]  Shaffer, B., Tarroja, B. and Samuelsen, S. (2015) Dispatch of Fuel Cells as Transmission Integrated Grid Energy Resources to Support Renewables and Reduce Emissions. Applied Energy, 148, 178-186.
https://doi.org/10.1016/j.apenergy.2015.03.018
[30]  Ma, L. and Spataru, C. (2015) The Use of Natural Gas Pipeline Network with Different Energy Carriers. Energy Strategy Reviews, 8, 72-81.
https://doi.org/10.1016/j.esr.2015.09.002
[31]  Mac Kinnon, M.A., Brouwer, J. and Samuelsen, S. (2018) The Role of Natural Gas and Its Infra-Structure in Mitigating Greenhouse Gas Emissions, Improving Regional Air Quality, and Renewable Resource Integration. Progress in Energy and Combustion Science, 64, 62-92.
https://doi.org/10.1016/j.pecs.2017.10.002
[32]  Ogden, J., Jaffe, A.M., Scheitrum, D., McDonald, Z. and Miller, M. (2018) Natural Gas as a Bridge to Hydrogen Transportation Fuel: Insights from the Literature. Energy Policy, 115, 317-329.
https://doi.org/10.1016/j.enpol.2017.12.049
[33]  PJM (2021) Natural Gas and Electric Market Coordination Issues. Norristown.
[34]  Erbach, G. (2019) Energy Storage and Sector Coupling: Towards an Integrated, Decarbonised Energy System. European Parliamentary Research Service, Brussels.
[35]  Wehbi, Z., Taher, R., Faraj, J., Castelain, C. and Khaled, M. (2022) Hybrid Thermoelectric Generators-Renewable Energy Systems: A Short Review on Recent Developments. Energy Reports, 8, 1361-1370.
https://doi.org/10.1016/j.egyr.2022.08.068
[36]  De Castro Reis, J., Dos Santos Constant, R., Angulo Meza, L. and Soares De Mello, J.C. (2019) Multiobjective Linear Programming to Determine the Most Suitable Electrical Energy Matrix for Countries: A Case Study at Brazil. IEEE Latin America Transactions, 17, 426-433.
https://doi.org/10.1109/tla.2019.8863313
[37]  Dos Santos, V.J., Calijuri, M.L. and De Assis, L.C. (2022) Land Cover Changes Implications in Energy Flow and Water Cycle in São Francisco Basin, Brazil, over the Past 7 Decades. Environmental Earth Sciences, 81, Article No. 83.
https://doi.org/10.1007/s12665-022-10210-5
[38]  Carpejani, P., De Jesus, É.T., Bonfim Catapan, B.L.S., Gouvea Da Costa, S.E., Pinheiro De Lima, E., Tortato, U., Machado, C.G. and Richter, B.K. (2020) Affordable and Clean Energy: A Study on the Advantages and Disadvantages of the Main Modalities. In: Leal Filho, W., Borges de Brito, P. and Frankenberger, F., Eds., International Business, Trade and Institutional Sustainability. World Sustainability Series, Springer, Cham, 615-627.
https://doi.org/10.1007/978-3-030-26759-9_35
[39]  Mensah, J.H.R., Dos Santos, I.F.S., Raimundo, D.R., Costa De Oliveira Botan, M.C., Barros, R.M. and Tiago Filho, G.L. (2022) Energy and Economic Study of Using Pumped Hydropower Storage with Renewable Resources to Recover the Furnas Reservoir. Renewable Energy, 199, 320-334.
https://doi.org/10.1016/j.renene.2022.09.003
[40]  Liu, L., Xu, S., Cui, L., Min, G. and Wang, H. (2019) Power Rationing for Tradeoff between Energy Consumption and Profit in Multimedia Heterogeneous Networks. IEEE Journal on Selected Areas in Communications, 37, 1642-1655.
https://doi.org/10.1109/jsac.2019.2916450
[41]  Rakhmonov, I.U., Reymov, K.M. and Dustova, S.H. (2020) Improvements in Industrial Energy Rationing Methods. IOP Conference Series: Materials Science and Engineering, 862, Article 062070.
https://doi.org/10.1088/1757-899x/862/6/062070
[42]  Avila-Diaz, A., Benezoli, V., Justino, F., Torres, R. and Wilson, A. (2020) Assessing Current and Future Trends of Climate Extremes across Brazil Based on Reanalyses and Earth System Model Projections. Climate Dynamics, 55, 1403-1426.
https://doi.org/10.1007/s00382-020-05333-z
[43]  Pittol Martini, L.C. (2022) Changes in Rainfall Patterns in Southern Brazil over 1961-2020 Period Detected by Rain Gauge Data. International Journal of Climatology, 42, 9101-9114.
https://doi.org/10.1002/joc.7804
[44]  Hunt, J.D., Nascimento, A., Caten, C.S.T., Tomé, F.M.C., Schneider, P.S., Thomazoni, A.L.R., De Castro, N.J., Brandão, R., De Freitas, M.A.V., Martini, J.S.C., Ramos, D.S. and Senne, R. (2022) Energy Crisis in Brazil: Impact of Hydropower Reservoir Level on the River Flow. Energy, 239, Article 121927.
https://doi.org/10.1016/j.energy.2021.121927
[45]  Kolpakhchyan, P., Lobov, B., Ivanov, I. and Safin, A. (2020) An Integrated Approach to the Creation of Decentralised Power Supply Systems Based on Gas Turbine Plants in the Regions of the Far North. E3S Web of Conferences, 220, Article No. 01074.
https://doi.org/10.1051/e3sconf/202022001074
[46]  Kotagodahetti, R., Hewage, K., Karunathilake, H. and Sadiq, R. (2023) Renewable Natural Gas as a Greener Energy Source: A Life Cycle Cost-Benefit Analysis. Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021, Whistler, 26-29 May 2021, 679-692.
https://doi.org/10.1007/978-981-19-0503-2_54
[47]  Moreira Dos Santos, R. and Szklo, A. (2022) Planning Natural Gas Networks and Storage in Emerging Countries—An Application to Brazil. Energy & Environment, 33, 1245-1264.
https://doi.org/10.1177/0958305x211019011
[48]  Onen, P.S., Mokryani, G. and Zubo, R.H.A. (2022) Optimal Expansion Planning of Integrated Natural Gas and Electricity Network with High Penetration of Wind and Solar Power under Uncertainty. In: 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, 14-16 June 2022, 908-913.
https://doi.org/10.1109/melecon53508.2022.9842898
[49]  Silva, L.M.F., De Oliveira, A.C.R., Leite, M.S.A. and Marins, F.A.S. (2021) Risk Assessment Model Using Conditional Probability and Simulation: Case Study in a Piped Gas Supply Chain in Brazil. International Journal of Production Research, 59, 2960-2976.
https://doi.org/10.1080/00207543.2020.1744764
[50]  Bricl, M. and Avsec, J. (2019) Evaluation of System for Economically Viable Thermal Power Plant Operation. Tehnicki Vjesnik: Technical Gazette, 26, 1038-1043.
https://doi.org/10.17559/tv-20180719184137
[51]  Rech, S. and Lazzaretto, A. (2018) Smart Rules and Thermal, Electric and Hydro Storages for the Optimum Operation of a Renewable Energy System. Energy, 147, 742-756.
https://doi.org/10.1016/j.energy.2018.01.079
[52]  Thang, V.V., Ha, T., Li, Q. and Zhang, Y. (2022) Stochastic Optimization in Multi-Energy Hub System Operation Considering Solar Energy Resource and Demand Response. International Journal of Electrical Power & Energy Systems, 141, Article 108132.
https://doi.org/10.1016/j.ijepes.2022.108132
[53]  Wang, Y., Liu, Z., Cai, C., Xue, L., Ma, Y., Shen, H., Chen, X. and Liu, L. (2022) Research on the Optimization Method of Integrated Energy System Operation with Multi-Subject Game. Energy, 245, Article 123305.
https://doi.org/10.1016/j.energy.2022.123305
[54]  Ye, L. and Jia, L. (2018) Multi-Objective Optimization for Thermal Power Plant Operation Based on Improved Working Condition. 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS), Enshi, 25-27 May 2018, 502-507.
https://doi.org/10.1109/ddcls.2018.8515906
[55]  Martinez, P.H. and Colacios, R.D. (2016) Pre-Salt: Oil and Public Policies in Brazil (2007-2016). Journal of Social, Technological and Environmental Science, 5, 145-167.
https://doi.org/10.21664/2238-8869.2016v5i1.p145-167
[56]  Azevedo Filho, E.T., Palma, M.A.M., Perestrelo, M., Da Hora, H.R.M. and Lira, R.A. (2019) The Pre-Salt Layer and Challenges to Competitiveness in Brazil: Critical Reflections on the Local Content Policy in the Oil and Gas Sector. The Extractive Industries and Society, 6, 1168-1173.
https://doi.org/10.1016/j.exis.2019.09.009
[57]  Mein, T.F., Gimenes, A.L.V., Dias, E.M., Rebello Pinho Dias Scoton, M.L. and Udaeta, M.E.M. (2021) Environmental Vulnerability in Pre-Salt Oil and Gas Operations. Energies, 14, Article 732.
https://doi.org/10.3390/en14030732
[58]  De Souza, L.S. and Sgarbi, G.N.C. (2020) The Brazilian Pre-Salt and the Regulatory Framework Evolution for Exploration and Production of Hydrocarbons in Brazil. Anuário do Instituto de Geociências-UFRJ, 43, 354-373.
https://doi.org/10.11137/2020_3_354_373
[59]  Empresa de Pesquisa Energética (2020) PIG 2020—Plano Indicativo de Gasodutos de Transporte. Brasília.
[60]  Empresa de Pesquisa Energética (2019) Plano Indicativo de Processamento e Escoamento de Gás Natural. Brasília.
[61]  Solano, R.F., De Azevedo, F.B. and Oazen, E. (2013) Design Challenges of Gas Export Pipelines for Pre-Salt Area offshore Brazil. Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. Volume 4A: Pipeline and Riser Technology, Nantes, 9-14 June 2013, Paper No. 10093.
https://doi.org/10.1115/omae2013-10093
[62]  De Jesus Delgado, F., Goncalves, P.H.N. and Chambriard, M. (2020) Brazil Oil and Gas Sector Piece De Resistance: The Pre-Salt Play Developments. Offshore Technology Conference Brazil, Rio de Janeiro, 29-31 October 2019, Paper No. 29840.
[63]  Bidart, A.M.F., De Melo, D.C., Passarelli, F.M., Do Nascimento, J.F., Silva, J.P., Sampaio Andrade, L.D., Dos Santos Pereira, L., De Rezende Tapajos, L. and Grava, W.M. (2015) Challenges in Offshore Natural Gas Processing. OTC Brasil 2015: The Atlantic: From East to WestAn Ocean of Innovation, Rio de Janeiro, 27-29 October 2015, 1470-1475.
[64]  Penha, H.S.P. (2014) Critical Reflections and Contributions to Improving the Complementarity of Thermoelectric and Industrial Consumption of Natural Gas. Master’s Thseis, Universidade de São Paulo, São Paulo.
[65]  Ministério de Minas e Energia (2020) Boletim Mensal de Acompanhamento da Indústria de Gás Natural. Brasília.
[66]  Waine, C. (2020) Brazil-Bolivia Gas Talks Suspended. Petroleum Economist, London.
[67]  Eini, S., Kontogeorgis, G.M. and Rashtchian, D. (2020) Cost Optimisation and Flexibility Analysis for the Liquefaction of an Associated Natural Gas Stream. Journal of Energy Resources Technology, 142, Article 062801.
https://doi.org/10.1115/1.4045459
[68]  Jokar, S.M., Wood, D.A., Sinehbaghizadeh, S., Parvasi, P. and Javanmardi, J. (2021) Transformation of Associated Natural Gas into Valuable Products to Avoid Gas Wastage in the Form of Flaring. Journal of Natural Gas Science and Engineering, 94, Article 104078.
https://doi.org/10.1016/j.jngse.2021.104078
[69]  Paltsev, S. (2015) Economics and Geopolitics of Natural Gas: Pipelines versus LNG. 2015 12th International Conference on the European Energy Market (EEM), Lisbon, 19-22 May 2015, 1-5.
https://doi.org/10.1109/eem.2015.7216651
[70]  Dos Santos, E.M., Carrera Zamalloa, G., Dondero Villanueva, L. and Fagá, M.T.W. (2002) Natural Gas: Strategies for a New Energy in Brazil. Annablume, São Paulo.
[71]  Tovar, B., Ramos-Real, F.J. and Fagundes De Almeida, E.L. (2015) Efficiency and Performance in Gas Distribution. Evidence from Brazil. Applied Economics, 47, 5390-5406.
https://doi.org/10.1080/00036846.2015.1047093
[72]  Aksyutin, O.E., Ishkov, A.G. and Grachev, V.A. (2018) Ecological and Economic Evaluation of Compressed Natural Gas Marine Transportation. 32nd International Business Information Management Association Conference, Seville, 15-16 November 2018, 3976-3988.
[73]  Busetto, M. and Cijan, A. (2017) The New Era of Compressed Natural Gas Transportation. Offshore Mediterranean Conference and Exhibition 2017, Ravenna, 29-31 March 2017, 763.
[74]  Vasconcelos, C.D., Lourenço, S.R., Gracias, A.C. and Cassiano, D.A. (2013) Network Flows Modeling Applied to the Natural Gas Pipeline in Brazil. Journal of Natural Gas Science and Engineering, 14, 211-224.
https://doi.org/10.1016/j.jngse.2013.07.001
[75]  Goldstein, A. (2010) The Emergence of Multilatinas: The Petrobras Experience. Universia Business Review, 25, 98-111.
[76]  Goldstein, A. and Baena, C. (2010) Drivers of Internationalisation of Companies from Emerging Economies: Comparing Petrobras (Brazil) and PDVSA (Venezuela). International Journal of Technological Learning, Innovation and Development, 3, 392-407.
https://doi.org/10.1504/ijtlid.2010.039165
[77]  Maragno, L. and Borba, J.A. (2019) Unearthing Money Laundering at Brazilian Oil Giant Petrobras. Journal of Money Laundering Control, 22, 400-406.
https://doi.org/10.1108/jmlc-03-2018-0027
[78]  Ministério de Minas e Energia (2020) Visão do planejamento energético de médio e longo prazos-Levantamento de custos e riscos da interface dos setores de gás natural e energia elétrica. Brasília.
[79]  Gomes, J. (2021) Turning up the Heat on Brazil’s Gas Reforms.
https://www.gov.br/economia/pt-br/assuntos/noticias/2019/07/acordo-entre-petrobras-e-cade-viabiliza-abertura-do-mercado-de-gas-natural
[80]  Camarotto, M. (2021) Petrobras ganha mais prazo do Cade para vender ativos de refino e gás.
https://valor.globo.com/empresas/noticia/2021/04/28/petrobras-ganha-mais-prazo-do-cade-para-vender-ativos-de-refino-e-gs.ghtml
[81]  Mistry, L., Wahid, F. and Fitch, P. (2020) Gas to Wire or Gas to Shore: Evaluation of Transitional Clean Energy in Offshore UKCS. 2020 SPE Annual Technical Conference and Exhibition, Virtual Meeting, 27-29 October 2020, Paper No. 201602.
https://doi.org/10.2118/201602-ms
[82]  Schernikau, L. and Smith, W.H. (2022) Climate Impacts of Fossil Fuels in Todays Electricity Systems. Journal of the Southern African Institute of Mining and Metallurgy, 122, 133-145.
https://doi.org/10.17159/2411-9717/1874/2022
[83]  Silveira, J.L., De Carvalho, J.A. and De Castro Villela, I.A. (2007) Combined Cycle versus One Thousand Diesel Power Plants: Pollutant Emissions, Ecological Efficiency and Economic Analysis. Renewable and Sustainable Energy Reviews, 11, 524-535.
https://doi.org/10.1016/j.rser.2004.11.007
[84]  Ministério de Minas e Energia (2019) Atualização dos diagnósticos e das recomendações do relatório do Subcomitê 8 do Programa Gás para Crescer. Brasília.
https://doi.org/10.2307/j.ctvt7x84v.5
[85]  Supremo Tribunal Federal (STF) (2020) Ação Cível Originária 854 Mato Grosso do Sul—Resumo do Relatório e do Voto-conjunto das ACO’s 854, 1.076 e 1.093. Brasília.
[86]  Damico, A., De Medeiros Costa, H.K., Balliram, S., Pereira, E.G. and Dos Santos, E.M. (2022) The Expansion of the Natural Gas Market through the Provisions of Law 14.182/21 that Deals with the Privatisation of Eletrobras. Research, Society and Development, 11, E7211830430.
https://doi.org/10.33448/rsd-v11i8.30430
[87]  Seciuk, C. (2022) Eletrobras’ “Jabuti” Requires Thermal Plants Where There Is No Gas and Can Be Expensive.
https://www.gazetadopovo.com.br/economia/jabuti-da-eletrobras-exige-termicas-onde-nao-ha-gas-e-pode-custar-caro/
[88]  Roser, M. (2021) Why Did Renewables Become So Cheap So Fast?
https://ourworldindata.org/cheap-renewables-growth
[89]  Brazilian Federal Senate (2016) Lei No 13.360 de 17/11/2016—Altera a Lei No 5.655, de 20 de Maio de 1971, a Lei No 10.438, de 26 de Abril de 2002, a Lei No 9.648, de 27 de Maio de 1998, a Lei No 12.111, de 9 de Dezembro de 2009, a Lei No 12.783, de 11 de Janeiro de 2013, a Lei No 9.074, de. Brasília.
[90]  José De Castro Vieira, S. and Tapia Carpio, L.G. (2020) The Economic Impact on Residential Fees Associated with the Expansion of Grid-Connected Solar Photovoltaic Generators in Brazil. Renewable Energy, 159, 1084-1098.
https://doi.org/10.1016/j.renene.2020.06.016
[91]  Empresa de Pesquisa Energética (2021) Guia de perguntas da frente de atuação: Separação lastro e energia. Brasília.
[92]  Brazilian Federal Senate (2021) Lei No 14.120 de 2021—Altera a Lei No 9.991, de 24 de Julho de 2000, a Lei No 5.655, de 20 de Maio de 1971, a Lei No 9.427, de 26 de Dezembro de 1996, a Lei No 10.438, de 26 de Abril de 2002, a Lei No 10.848, de 15 de Março de 2004, a Lei No 12.111, de. Brasília.
[93]  Gonçalves, C.P. and Ramos, D.S. (2019) The Importance of Natural Gas for Supplying the Brazilian Electricity Market—An Analysis from the Perspective of Investment Feasibility. A Regulação Do GÁS Natural No Brasil, Foz do Iguaçú, 263-290.
[94]  Ministério de Minas e Energia (2020) Portaria MME No 435 de 2020.
[95]  Ministério de Minas e Energia, Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Pré-Sal Petróleo S.A, Empresa de Pesquisa Energética and Banco Nacional do Desenvolvimento. (2020) Estudo sobre o aproveitamento do gás natural do pré-sal. Rio de Janeiro.
[96]  Rego, E.E. (2012) Proposal for Improving the Methodology of Electric Energy Auctions in the Regulated Environment: Conceptual, Methodological Aspects and Their Applications. Doctoral Thesis, University of São Paulo, São Paulo.
https://doi.org/10.11606/T.86.2012.tde-28112012-093549
[97]  Conselho Empresarial Brasileiro para o Desenvolvimento Sustentável (CEBDS) (2019) Guide to Corporate Power Purchase Agreements (PPA’s) for Renewable Energy in Brazil. Rio de Janeiro.
[98]  Sonibare, J.A. and Akeredolu, F.A. (2006) Natural Gas Domestic Market Development for Total Elimination of Routine Flares in Nigeria’s Upstream Petroleum Operations. Energy Policy, 34, 743-753.
https://doi.org/10.1016/j.enpol.2004.07.006
[99]  Chidinma, U. (2013) Using Gas Turbine for Electricity Supply in a Typical Nigerian University: A Case Study of University of Port Harcourt. Society of Petroleum Engineers—37th Nigeria Annual International Conference and Exhibition: To Grow Africas Oil and Gas Production: Required Policy, Funding, Technol., Techniques and Capabilities, Vol. 2, Victoria Island, 30 July-1 August 2013, 1166-1185.
https://doi.org/10.2118/167600-ms
[100]  Van Meurs, P. (2021) Nigeria’s Petroleum Industry Bill and the Zero-Carbon Future. Van Meurs Energy, Panama City.
[101]  Ojijiagwo, E.N., Oduoza, C.F. and Emekwuru, N. (2018) Technological and Economic Evaluation of Conversion of Potential Flare Gas to Electricity in Nigeria. Procedia Manufacturing, 17, 444-451.
https://doi.org/10.1016/j.promfg.2018.10.068
[102]  Onwuka, E.I. and Iledare, O. (2015) Nigeria Gas to Power Value Chain Systems Economic Evaluation and Modeling. SPE Nigeria Annual International Conference and Exhibition, Victoria Island, 4-6 August 2015, Paper No. 178340.
https://doi.org/10.2118/178340-ms
[103]  Lee, W.W. (2004) US Lessons for Energy Industry Restructuring: Based on Natural Gas and California Electricity Incidences. Energy Policy, 32, 237-259.
https://doi.org/10.1016/s0301-4215(02)00287-2
[104]  Ministério de Minas e Energia (2019) Proposta para o mercado brasileiro de gás natural. Brasília.
[105]  CCEE (2020) CCEE Technical Note—CCEE06673-2021.
https://www.ccee.org.br/documents/80415/919464/Nota Técnica CCEE - CCEE06673-2021.pdf/7a7f2707-0b43-5abd-05ac-938d0768c303
[106]  Fritsch, J. and Poudineh, R. (2016) Gas-to-Power Market and Investment Incentive for Enhancing Generation Capacity: An Analysis of Ghana’s Electricity Sector. Energy Policy, 92, 92-101.
https://doi.org/10.1016/j.enpol.2016.01.034
[107]  Eisenhardt, K.M. (1989) Agency Theory: An Assessment and Review. The Academy of Management Review, 14, 57-74.
[108]  Jooshaki, M., Abbaspour, A., Fotuhi-Firuzabad, M., Moeini-Aghtaie, M. and Lehtonen, M. (2019) Multistage Expansion Co-Planning of Integrated Natural Gas and Electricity Distribution Systems. Energies, 12, Article 1020.
https://doi.org/10.3390/en12061020
[109]  Kanelakis, N.G., Biskas, P.N., Chatzigiannis, D.I. and Bakirtzis, A.G. (2020) A Stochastic Two-Stage Model for the Integrated Scheduling of the Electric and Natural Gas Systems. IEEE Open Access Journal of Power and Energy, 7, 453-466.
https://doi.org/10.1109/oajpe.2020.3030193
[110]  Shabazbegian, V., Ameli, H., Ameli, M.T. and Strbac, G. (2020) Stochastic Optimisation Model for Coordinated Operation of Natural Gas and Electricity Networks. Computers & Chemical Engineering, 142, Article 107060.
https://doi.org/10.1016/j.compchemeng.2020.107060

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413