全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Binding Energy, Root Mean Square Radius and Magnetic Dipole Moment of the Triton Nucleus

DOI: 10.4236/ojm.2024.142003, PP. 24-39

Keywords: Translation Invariant Shell Model, Residual Two-Body Interactions, Nucleon-Nucleon Interactions, Binding Energy, Nuclear Wave Functions

Full-Text   Cite this paper   Add to My Lib

Abstract:

The basis functions of the translation invariant shell model are used to construct the ground state nuclear wave functions of 3H. The used residual two-body interactions consist of central, tensor, spin orbit and quadratic spin orbit terms with Gaussian radial dependence. The parameters of these interactions are so chosen in such a way that they represent the long-range attraction and the short-range repulsion of the nucleon-nucleon interactions. These parameters are so chosen to reproduce good agreement between the calculated values of the binding energy, the root mean-square radius, the D-state probability, the magnetic dipole moment and the electric quadrupole moment of the deuteron nucleus. The variation method is then used to calculate the binding energy of triton by varying the oscillator parameter which exists in the nuclear wave function. The obtained nuclear wave functions are then used to calculate the root mean-square radius and the magnetic dipole moment of the triton.

References

[1]  De-Shalit, A. and Talmi, I. (2013) Nuclear Shell Theory. Academic Press, New York.
[2]  Bargman, V. and Moshinsky, M. (1961) Group Theory of Harmonic Oscillators. I. The Collective Modes. Nuclear Physics, 18, 697-712.
https://doi.org/10.1016/0029-5582(60)90438-7
[3]  Kramer, P. and Moshinsky, M. (1966) Group Theory of Harmonic Oscillators (III). States with Permutational Symmetry. Nuclear Physics, 82, 241-274.
https://doi.org/10.1016/0029-5582(66)90001-0
[4]  Ring, P. and Schuck, P. (1980) The Nuclear Many-Body Problem. Springer Verlag, New York.
https://doi.org/10.1007/978-3-642-61852-9
[5]  Vanagas, V.V. (1971) Algebraic Methods in Nuclear Theory. Mintis, Vilnius.
[6]  Doma, S.B. (2002) Single Particle Schrödinger Fluid and Moments of Inertia of Deformed Nuclei. Journal High Energy Physics and Nuclear Physics, 26, 836-842.
[7]  Doma, S.B., Kharroube, K.A., Tefiha, A.D. and El-Gendy, H.S. (2011) The Deformation Structure of the Even-Even p-and sd Shell Nuclei. Alexandria Journal of Physics, 1, 1-13.
[8]  Doma, S.B. (2003) The Single Particle Schrodinger Fluid and Moments of Inertia of Deformed Nuclei. Bulgarian Journal of Physics, 30, 117-124.
[9]  Doma, S.B. and Amin, M.M. (2009) Single Particle Schrödinger Fluid and Moments of Inertia of the Even-Even Uranium Isotopes. The Open Applied Mathematics Journal, 3, 1-6.
https://doi.org/10.2174/1874114200903010001
[10]  Doma, S.B. and El-Gendy, H.S. (2018) A Nuclear Phenomenological Study of the Even-Even Thorium Isotopes. International Journal of Modern Physics E, 27, Article 1850040.
https://doi.org/10.1142/S0218301318500404
[11]  Hammad, M.M., Yahia, M.M., Motaweh, H.A. and Doma, S.B. (2020) Critical Potentials and Fluctuations Phenomena with Quartic, Sextic, and Octic Anharmonic Oscillator Potentials. Nuclear Physics A, 1004, Article 122036.
https://doi.org/10.1016/j.nuclphysa.2020.122036
[12]  Hammad, M.M., Shetawy, H.E., Aly, A.A. and Doma, S.B. (2019) Nuclear Supersymmetry and Dual Algebraic Structures. Physica Scripta, 94, Article 105207.
https://doi.org/10.1088/1402-4896/ab2442
[13]  Hammad, M.M., Yaqut, A.S.H., Abdel-Khalek, M.A. and Doma, S.B. (2021) Analytical Study of Conformable Fractional Bohr Hamiltonian with Kratzer Potential. Nuclear Physics A, 1015, Article 122307.
https://doi.org/10.1016/j.nuclphysa.2021.122307
[14]  Blatt, J.M. and Weisskopf, V.F. (1979) Theoretical Nuclear Physics. Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4612-9959-2
[15]  Doma, S.B. (2003) Study of Nuclei with A = 5 on the Basis of the Unitary Scheme Model. International Journal of Modern Physics E, 12, 421-429.
https://doi.org/10.1142/S021830130300134X
[16]  Doma, S.B. and El-Zebidy, A.F.M. (2005) Cluster-Cluster Potentials for the Lithium Nuclei. International Journal of Modern Physics E, 14, 189-195.
https://doi.org/10.1142/S0218301305002989
[17]  Doma, S.B. (1985) Unitary Scheme Model Study of 4He with the Gogny, Pires and Detourreil Interaction. Helvetica Physica Acta, 58, 1072-1077.
[18]  Doma, S.B., El-Zebidy, A.F.M. and Abdel-Khalik, M.A. (2006) The Mean Lifetime of the β-Decay and the Nuclear Magnetic Dipole Moment for Nuclei with A = 7. Journal of Physics G: Nuclear and Particle Physics, 34, 27.
https://doi.org/10.1088/0954-3899/34/1/002
[19]  Doma, S.B. and El-Gendy, H.S. (2018) Unitary Scheme Model Calculations of the Ground and Excited State Characteristics of 3H and 4He. Journal of Physics Communications, 2, Article 065005.
https://doi.org/10.1088/2399-6528/aac79f
[20]  Doma, S.B., El-Nohy, N.A. and Gharib, K.K. (1996) The Ground-State Characteristics of Deuteron Using Gaussian Potentials. Helvetica Physica Acta, 69, 90-104.
[21]  Doma, S.B., El-Gendy, H.S. and Hammad, M.M. (2020) Large Basis Unitary Scheme Model Calculations for the Mirror Nuclei with A = 7. Chinese Journal of Physics, 63, 21-35.
https://doi.org/10.1016/j.cjph.2019.10.026
[22]  Doma, S.B. (2002) Ground State Characteristics of the Light Nuclei with A ≤ 6 on the Basis of the Translation Invariant Shell Model by Using Nucleon-Nucleon Interactions. Chinese Physics C, 26, 941-948.
[23]  Doma, S.B. (2012) Unitary Scheme Model Calculations of A = 6 Nuclei with Realistic Interactions. International Journal of Modern Physics E, 21, Article 1250077.
[24]  Ericson, T.E.O. and Rosa-Clot, M. (1983) The Deuteron Asymptotic D-State as a Probe of the Nucleon-Nucleon Force. Nuclear Physics A, 405, 497-533.
https://doi.org/10.1016/0375-9474(83)90516-X
[25]  Ericson, T.E.O. (1984) The Deuteron Properties. Nuclear Physics A, 416, 281-298.
https://doi.org/10.1016/0375-9474(84)90467-6
[26]  Rodning, N.L., Madison, W.U. and Knutspn, L.D. (1990) Asymptotic D-State to S-State Ratio of the Deuteron. Physical Review C, 41, 898-909.
https://doi.org/10.1103/PhysRevC.41.898
[27]  Samuel, S.M.W. (1990) Introductory Nuclear Physics. Prentice Hall, Englewood Cliffs, NJ.
[28]  Zheng, D.C., Vary, J.P. and Barrett, B.R. (1994) Large-Space Shell-Model Calculations for Light Nuclei. Physical Review C, 50, 2841-2849.
https://doi.org/10.1103/PhysRevC.50.2841
[29]  Carlson, J. and Pandharipande, V.R. (1981) A Study of Three-Nucleon Interaction in Three-and Four-Body Nuclei. Nuclear Physics A, 371, 301-317.
https://doi.org/10.1016/0375-9474(81)90069-5
[30]  Friar, J.L. (1987) Results of Recent Calculations Using Realistic Potentials, Few-Body Problems in Particle, Nuclear, Atomic, and Molecular Physics. Proceedings of the XIth-European Conference on Few-Body Physics, Fontevraud, 31 September-5 August 1987, 51-63.
https://doi.org/10.1007/978-3-7091-8956-6_4

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413