全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Life Origin in the Milky Way Galaxy: I. The Stellar Nucleogenesis of Elements Necessary for the Life Origin

DOI: 10.4236/jhepgc.2024.102040, PP. 647-680

Keywords: Stellar Nucleogenesis, Solar Abundance, Ensemble-Averaged Stellar Reactor, Stellar Abundance, Interstellar Mission, Habitability, DNA-Star

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chemical elements in space can be synthesized by stellar nuclear reactors. Studying the dynamics of processes occurring in the stars introduces a concept of the ensemble-averaged stellar reactor. For future interstellar missions, the terrestrial and solar abundances were compared with considerable number of stars allocated in the ~200 pc solar neighborhood. According to the value of the effective temperature, four stellar classes are distinguished, for which the correlation coefficients and standard deviation are calculated. The statement about the possibility of transferring heavy elements synthesized by stars over long distances in space has been completely refuted. There is no immutability of the distribution of elements on neighboring stars and in the Solar System. It is shown that chemical elements are mainly synthesized inside each stellar reactor. The theory of the buoyancy of elements is generalized to stars. It has been suggested that stars overheat due to a shift in the parameters of nuclear processes occurring inside stars, which leads to the synthesis of heavy elements.

References

[1]  Burbidge, E.M., Burbidge, G.R., Fowler, W.A. and Hoyle, F. (1957) Synthesis of the Elements in Stars. Reviews of Modern Physics, 29, 547-650.
https://doi.org/10.1103/RevModPhys.29.547
[2]  Kobayashi, C., Karakas, A.I. and Lugaro, M. (2020) The Origin of Elements from Carbon to Uranium. The Astrophysical Journal, 900, 179.
https://doi.org/10.3847/1538-4357/abae65
[3]  Herndon, J.M. (2011) Corruption of Science in America. The Dot Connector Magazine, 2, 25-32.
http://nuclearplanet.com/corruption.pdf
[4]  Ludhova, L. and Zavatarelli, S. (2013) Studying the Earth with Geoneutrinos. Advances in High Energy Physics, 2013, Article ID: 425693.
https://doi.org/10.1155/2013/425693
[5]  Safronov, A.N. (2016) The Basic Principles of Creation of Habitable Planets around Stars in the Milky Way Galaxy. International Journal of Astronomy and Astrophysics, 6, 512-554.
https://doi.org/10.4236/ijaa.2016.64039
[6]  Safronov, A.N. (2020) A New View of the Mass Extinctions and the Worldwide Floods. International Journal of Geosciences, 11, 251-287.
https://doi.org/10.4236/ijg.2020.114014
[7]  Asplund, M., Amarsi, A.M. and Grevesse, N. (2021) The Chemical Make-Up of the Sun: A 2020 Vision. Astronomy & Astrophysics, 653, Article No. A141.
https://doi.org/10.1051/0004-6361/202140445
[8]  Shin, E.J., Kim, J.H. and Oh, B.K. (2021) How Metals Are Transported in and out of a Galactic Disk: Dependence on the Hydrodynamic Schemes in Numerical Simulations. The Astrophysical Journal, 917, Article 12.
https://doi.org/10.3847/1538-4357/abffd0
[9]  Safronov, A.N. (2024) Life Origin in the Milky Way Galaxy: III. Spatial Distribution of Overheated Stars in the Solar Neighborhood. Journal of High Energy Physics, Gravitation and Cosmology, 10, 693-709.
https://doi.org/10.4236/jhepgc.2024.102042
[10]  Safronov, A.N. (2024) Life Origin in the Milky Way Galaxy: II. Scanning for Habitable Stellar Systems on Behalf of Future Space Missions. Journal of High Energy Physics, Gravitation and Cosmology, 10, 681-692.
https://doi.org/10.4236/jhepgc.2024.102041
[11]  Scott, P., Grevesse, N., Asplund, M., Sauval, A.J., Lind, K., Takeda, Y., Collet, R., Trampedach, R. and Hayek, W. (2014) The Elemental Composition of the Sun. I. The Intermediate Mass Elements Na to Ca. Astronomy & Astrophysics, 573, Article No. A25.
https://doi.org/10.1051/0004-6361/201424109
[12]  Scott, P., Asplund, M., Grevesse, N., Bergemann, M. and Sauval, A.J. (2014) The Elemental Composition of the Sun. II. The Iron Group Elements Sc to Ni. Astronomy & Astrophysics, 573, Article No. A26.
https://doi.org/10.1051/0004-6361/201424110
[13]  Grevesse, N., Scott, P., Asplund, M. and Sauval, A.J. (2015) The Elemental Composition of the Sun. III. The Heavy Elements Cu to Th. Astronomy & Astrophysics, 573, Article No. A27.
https://doi.org/10.1051/0004-6361/201424111
[14]  Asplund, M., Grevesse, N., Sauval, A.J. and Scott, P. (2009) The Chemical Composition of the Sun. Annual Review of Astronomy and Astrophysics, 47, 481-522.
https://doi.org/10.1146/annurev.astro.46.060407.145222
[15]  Lodders, K. (2010) Solar System Abundances of the Elements. In: Goswami, A. and Reddy, B., Eds., Principles and Perspectives in Cosmochemistry, Springer, Berlin, 379-417.
https://doi.org/10.1007/978-3-642-10352-0_8
[16]  Hinkel, N.R., Timmes, F.X., Youngm P.A., Pagano, M.D. and Turnbull, M.C. (2020) Dataset: Stellar Abundances in the Solar Neighborhood: The Hypatia Catalog.
https://www.hypatiacatalog.com/hypatia/default/launch
[17]  Hinkel, N.R., Timmes, F.X., Young, P.A., Pagano, M.D. and Turnbull, M.C. (2014) Stellar Abundances in the Solar Neighborhood: The Hypatia Catalog. The Astronomical Journal, 148, Article 54.
https://doi.org/10.1088/0004-6256/148/3/54
[18]  Hinkel, N.R., Young, P.A., Pagano, M.D., Desch, S.J., Anbar, A.D., Adibekyan, V., Blanco-Cuaresma, S., Carlberg, J.K., Mena, E.D., Liu, F., Nordlander, T., Sousa, S.G., Korn, A., Gruyters, P., Heiter, U., Jofre, P., Santos, N.C. and Soubiran, C. (2016) A Comparison of Stellar Elemental Abundance Techniques and Measurements. The Astrophysical Journal Supplement Series, 226, Article 4.
https://doi.org/10.3847/0067-0049/226/1/4
[19]  Hinkel, N.R., Mamajek, E.E., Turnbull, M.C., Osby, E., Shkolnik, E.L., Smith, G.H., Klimasewski, A., Somers, G. and Desch, S.J. (2017) A Catalog of Stellar Unified Properties (CATSUP) for 951 FGK-Stars within 30 pc. The Astrophysical Journal, 848, Article 34.
https://doi.org/10.3847/1538-4357/aa8b0f
[20]  Hoyle, F. (1946) The Synthesis of the Elements from Hydrogen. Monthly Notices of the Royal Astronomical Society, 106, 343-383.
https://doi.org/10.1093/mnras/106.5.343
[21]  Hoyle, F. (1954) On Nuclear Reactions Occurring in Very Hot STARS. I. The Synthesis of Elements from Carbon to Nickel. Astrophysical Journal Supplement, 1, 121.
https://doi.org/10.1086/190005
[22]  Cameron, A.G.W. (1957) Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis. Atomic Energy of Canada, Report CRL-41.
https://fas.org/sgp/eprint/CRL-41.pdf
[23]  Clayton, D.D., Fowler, W.A., Hull, T.E. and Zimmerman, B.A. (1961) Neutron Capture Chains in Heavy Element Synthesis. Annals of Physics, 12, 331-408.
https://doi.org/10.1016/0003-4916(61)90067-7
[24]  Seeger, P.A., Fowler, W.A. and Clayton, D.D. (1965) Nucleosynthesis of Heavy Elements by Neutron Capture. Astrophysical Journal Supplement, 11, 121-126.
https://doi.org/10.1086/190111
[25]  Viola, V.E. (1990) Formation of the Chemical Elements and the Evolution of Our Universe. Journal Chemical Education, 67, 723-730.
https://doi.org/10.1021/ed067p723
[26]  Jonson, B. (1995) Nuclear Processes in Astrophysics. Physica Scripta, T59, 53-58.
https://doi.org/10.1088/0031-8949/1995/T59/006
[27]  Wallerstein, G., Iben Jr., I., Parker, P., Boesgaard, A.M., Hale, G.M., Champagne, A.E., Barnes, C.A., Kappeler, F., Smith, V.V., Hoffman, R.D., Timmes, F.X., Sneden, C., Boyd, R.N., Meyer, B.S. and Lambert, D.L. (1997) Synthesis of the Elements in Stars: Forty Years of Progress. Reviews of Modern Physics, 69, 995-1084.
https://doi.org/10.1103/RevModPhys.69.995
[28]  Travaglio, C., Gallino, R., Arnone, E., Cowan, J., Jordan, F. and Sneden, C. (2004) Galactic Evolution of Sr, Y, and Zr: A Multiplicity of Nucleosynthetic Processe. The Astrophysical Journal, 601, 864-884.
https://doi.org/10.1086/380507
[29]  Reifarth, R., Lederer, C. and Kappeler, F. (2014) Neutron Reactions in Astrophysics. Journal of Physics G: Nuclear and Particle Physics, 41, Article ID: 053101.
https://doi.org/10.1088/0954-3899/41/5/053101
[30]  Goriely, S. and Pinedo, G.M. (2015) The Production of Transuranium Elementsby the r-Process Nucleosynthesis. Nuclear Physics A, 944, 158-176.
https://doi.org/10.1016/j.nuclphysa.2015.07.020
[31]  Liccardo, V., Malheiro, M., Hussein, M.S., Carlson, B.V. and Frederico, T. (2018) Nuclear Processes in Astrophysics: Recent Progress. The European Physical Journal A, 54, Article No. 221.
https://doi.org/10.1140/epja/i2018-12648-5
[32]  Prantzos, N., Abia, C., Limongi, M., Chieffi, A. and Cristallo, S. (2018) Chemical Evolution with Rotating Massive Star Yields—I. The Solar Neighbourhood and the s-Process Elements. Monthly Notices of the Royal Astronomical Society, 476, 3432-3459.
https://doi.org/10.1093/mnras/sty316
[33]  Karakas, A.I. (2018) Nucleosynthesis in Stars: The Origin of the Heaviest Elements. Proceedings of the International Astronomical Union, 14, 79-88.
https://doi.org/10.1017/S1743921318006166
[34]  Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. and Stanier, R.Y. (1979) Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Journal of General Microbiology, 111, 1-61.
https://doi.org/10.1099/00221287-111-1-1
[35]  Bohr, N. and Wheeler, J.A. (1939) The Mechanism of Nuclear Fission. Physical Review D, 56, 426-450.
https://doi.org/10.1103/PhysRev.56.426
[36]  Ghahramany, N., Gharaati, S.H., Ghanaatian, M. and Hora, H. (2011) New Scheme of Nuclide and Nuclear Binding Energy from Quark-Like Model. Iranian Journal of Science and Technology, A3, 201-208.
[37]  Ghahramany, N., Gharaati, S. and Ghanaatian, M. (2012) New Approach to Nuclear Binding Energy in Integrated Nuclear Model. Journal of Theoretical and Applied Physics, 6, 1-5.
https://doi.org/10.1186/2251-7235-6-3
[38]  Woosley, S.E., Heger, A. and Weaver, T.A. (2002) Evolution and Explosion of Massive Stars. Reviews of Modern Physics, 74, 1015-1071.
https://doi.org/10.1103/RevModPhys.74.1015
[39]  Wood, B.J., Walter, M.J. and Wade, J. (2006) Accretion of the Earth and Segregation of Its Core. Nature, 441, 825-833.
https://doi.org/10.1038/nature04763
[40]  Kuroda, P.K. (1960) Nuclear Fission in the Early History of the Earth. Nature, 187, 36-38.
https://doi.org/10.1038/187036a0
[41]  Herndon, J.M. (1992) Nuclear Fission Reactors as Energy Sources for the Giant Outer Planets. Naturwissenschaften, 79, 7-14.
https://doi.org/10.1007/BF01132272
[42]  Herndon, J.M. (1993) Feasibility of a Nuclear Fission Reactor at the Center of the Earth as the Energy Source for the Geomagnetic Field. Journal of Geomagnetism and Geoelectricity, 45, 423-437.
https://doi.org/10.5636/jgg.45.423
[43]  Herndon, J.M. (1996) Sub-Structure of the Inner Core of the Earth. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 93, 646-648.
https://doi.org/10.1073/pnas.93.2.646
[44]  Hollenbach, D. F., Herndon, J. M. (2001) Deep-Earth Reactor: Nuclear Fission, Helium, and the Geomagnetic Field. Proceedings of the National Academy of Sciences of the United States of America, 98, 11085-11090.
https://doi.org/10.1073/pnas.201393998
[45]  Herndon, J.M. (2003) Nuclear Georeactor Origin of Oceanic Basalt 3He/4He, Evidence, and Implications. Proceedings of the National Academy of Sciences of the United States of America, 100, 3047-3050.
https://doi.org/10.1073/pnas.0437778100
[46]  Herndon, J.M. (2014) Terracentric Nuclear Fission Georeactor: Background, Basis, Feasibility, Structure, Evidence and Geophysical Implications. Current Science, 106, 528-541.
[47]  Anisichkin, V.F. (1997) Do Planets Burst? Combustion, Explosion and Shock Waves, 33, 117-120.
https://doi.org/10.1007/BF02671863
[48]  Bao, X. and Zhang, A. (1998) Geochemistry of U and Th and ITS INFLUence on the Origin and Evolution of the Crust of Earth and the Biological Evolution. Acta Petrologica et Mineralogica, 17, 160-172.
[49]  Bao, X.Z. (1999) Distribution of U and Th and Their Nuclear Fission in the Outer Core of the Earth and Their Effects on the Geodynamics. Geological Review, 45, 82-92.
[50]  de Meijer, R.J., van der Graaf, E.R. and Jungmann, K.P. (2004) Quest for a Nuclear Georeactor. Radiation Physics and Chemistry, 71, 769-744.
https://doi.org/10.1016/j.radphyschem.2004.04.128
[51]  Anisichkin, V.F., Bezborodov, A.A. and Suslov, I.R. (2005) Nuclear Fission Chain Reactions of Nuclides in the Earth’s Core over Billions of Years. Atomic Energy, 98, 352-360.
https://doi.org/10.1007/s10512-005-0217-3
[52]  Butler, S.L., Peltier, W.R. and Costin, S.O. (2005) Numerical Models of the Earth Thermal History: Effects of Inner-Core Solidification and Core Potassium. Physics of the Earth and Planetary Interiors, 152, 22-42.
https://doi.org/10.1016/j.pepi.2005.05.005
[53]  Schuiling, R. (2006) Is There a Nuclear Reactor at the Center of the Earth? Earth, Moon, and Planets, 99, 33-49.
https://doi.org/10.1007/s11038-006-9108-4
[54]  Rusov, V.D., Pavlovich, V.N., Vaschenko, V.N., Tarasov, V.A., Zelentsova, T.N., Bolshakov, V.N., Litvinov, D.A., Kosenko, S.I. and Byegunova, O.A. (2007) Geoantineutrino Spectrum and Slow Nuclear Burning on the Boundary of the Liquid and Solid Phases of the Earth’s Core. Journal of Geophysical Research, 112, B09203.
https://doi.org/10.1029/2005JB004212
[55]  Anisichkin, V.F., Bezborodov, A.A. and Suslov, I.R. (2008) Georeactor in the Earth. Transport Theory and Statistical Physics, 37, 624-633.
https://doi.org/10.1080/00411450802515817
[56]  de Meijer, R.J. and van Westrenen, W. (2008) Assessing the Feasibility and Consequences of Nuclear Georeactors in Earth Core-Mantle Boundary Region. South African Journal of Science, 104, 111-118.
[57]  Rusov, V., Litvinov, D., Linnik, E., Vaschenko, V., Zelentsova, T., Beglaryan, M., Tarasov, V., Chernegenko, S., Smolyar, V., Molchinikolov, P., Merkotan, K. and Kavatskyy, P. (2013) KamLAND-Experiment and Soliton-Like Nuclear Georeactor. Part I. Comparison of Theory with Experiment. Journal of Modern Physics, 4, 528-550.
https://doi.org/10.4236/jmp.2013.44075
[58]  Fukuhara, M. (2017) Possible Generation of Heat from Nuclear Fusion in Earth’s Inner core. Scientific Reports, 7, Article No. 46436.
https://doi.org/10.1038/srep46436
[59]  Feber, R.C., Wallace, T.C. and Libby, L.M. (1984) Uranium in the Earth’s Core. EOS, 65, 785-786.
https://doi.org/10.1029/EO065i044p00785-01
[60]  Murthy, V.R., van Westrenen, W. and Fei, Y. (2003) Experimental Evidence tHat Potassium Is a Substantial Radioactive Heat Source in Planetary Cores. Nature, 423, 163-165.
https://doi.org/10.1038/nature01560
[61]  de Meijer, R.J., Anisichkin, V.F. and van Westrenen, W. (2013) Forming the Moon from Terrestrial Silicate-Rich Material. Chemical Geology, 345, 40-49.
https://doi.org/10.1016/j.chemgeo.2012.12.015
[62]  Fogli, G.L., Lisi, E., Palazzo, A. and Rotunno, A.M. (2005) KamLAND Neutrino Spectra in Energy and Time: Indications for Reactor Power Variations and Constraints on the Georeactor. Physics Letters B, 623, 80-92.
https://doi.org/10.1016/j.physletb.2005.07.064
[63]  Dye, S.T., Guillian, E., Learned, J.G., Maricic, J., Matsuno, S., Pakvasa, S., Varner, G. and Wilcox, M. (2006) Earth Radioactivity Measurements with a Deep Ocean Antineutrino Observatory. Earth, Moon, and Planets, 99, 241-252.
https://doi.org/10.1007/s11038-006-9129-z
[64]  Fiorentini, G., Lissia, M. and Mantovani, F. (2007) Geo-Neutrinos and Earth’s Interior. Physics Reports, 453, 117-172.
https://doi.org/10.1016/j.physrep.2007.09.001
[65]  Dye, S.T. (2009) Neutrino Mixing Discriminates Geo-Reactor Models. Physics Letters B, 679, 15-18.
https://doi.org/10.1016/j.physletb.2009.07.010
[66]  Fogli, G.L., Lisi, E., Palazzo, A. and Rotunno, A.M. (2010) Combined Analysis of KamLAND and Borexino Neutrino Signals from Th and U Decays in the Earth’s Interior. Physical Review D, 82, Article ID: 093006.
https://doi.org/10.1103/PhysRevD.82.093006
[67]  Gando, A. and KamLAND Collaboration (2011) Partial Radiogenic Heat Model for Earth Revealed by Geoneutrino Measurements. Nature Geoscience, 4, 647-651.
https://doi.org/10.1038/ngeo1205
[68]  Dye, S.T. (2012) Geoneutrinos and the Radioactive Power of the Earth. Reviews of Geophysics, 50, RG3007.
https://doi.org/10.1029/2012RG000400
[69]  Sramek, O., McDonough, W.F. and Learned, J.G. (2012) Geoneutrinos. Advances in High Energy Physics, 2012, Article ID: 235686.
https://doi.org/10.1155/2012/235686
[70]  Sramek, O., McDonough, W.F., Kite, E.S., Lekic, V., Dye, S.T. and Zhong, S. (2013) Geophysical and Geochemical Constraints on Geoneutrinos Fluxes from Earth’s Mantle. Earth and Planetary Science Letters, 361, 356-366.
https://doi.org/10.1016/j.epsl.2012.11.001
[71]  Gando, A. and KamLAND Collaboration (2013) Reactor on-off Antineutrino Measurement with KamLAND. Physical Review D, 88, Article ID: 033001.
[72]  Agostini, M. and Borexino Collaboration (2015) Spectroscopy of Geoneutrinos from 2056 Days of Borexino Data. Physical Review D, 92, Article ID: 031101.
[73]  Roncin, R. and Borexino Collaboration (2016) Geo-Neutrino Results with Borexino. Journal of Physics: Conference Series, 675, Article ID: 012029.
https://doi.org/10.1088/1742-6596/675/1/012029
[74]  Falk, S.W., Lattmer, J.M. and Margolis, S.H. (1977) Are Supernovae Sources of Presolar Grains? Nature, 270, 700-701.
https://doi.org/10.1038/270700a0
[75]  Posselt, B., Neuhauser, R. and Haberl, F. (2009) Searching for Substellar Companions of Young Isolated Neutron Stars. Astronomy & Astrophysics, 496, 533-545.
https://doi.org/10.1051/0004-6361/200810156
[76]  Cardelli, J.A. (1994) The Abundance of Heavy Elements in Interstellar Gas. Science, 265, 209-213.
https://doi.org/10.1126/science.265.5169.209
[77]  Basu, S. and Antia, H.M. (2008) Helioseismology and Solar Abundances. Physics Reports, 457, 217-283.
https://doi.org/10.1016/j.physrep.2007.12.002
[78]  JEFF-3.1 (2020) Joint Evaluated Fission and Fusion File, Incident Neutron Data.
http://www-nds.iaea.org/exfor/endf00.htm
[79]  Koning, A., Forrest, R., Kellett, M., Mills, R., Henriksson, H. and Rugama, Y. (2006) The JEFF-3.1 Nuclear Data Library. JEFF Report 21, OECD/NEA, Paris.
[80]  Vinyoles, N., Serenelli, A.M., Villante, F.L., Basu, S., Bergstrom, J., Gonzalez-Garcia, M.C., Maltoni, M., Pena-Garay, C. and Song, N.Q. (2017) A New Generation of Standard Solar Models. The Astrophysical Journal, 835, Article 202.
https://doi.org/10.3847/1538-4357/835/2/202
[81]  Sitnova, T.M., Mashonkina, L.I. and Ryabchikova, T.A. (2018) A NLTE Line Formation for Neutral and Singly Ionized Calcium in Model Atmospheres of B-F Stars. Monthly Notices of the Royal Astronomical Society, 477, 3343-3352.
https://doi.org/10.1093/mnras/sty810

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133