全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Life Origin in the Milky Way Galaxy: II. Scanning for Habitable Stellar Systems on Behalf of Future Space Missions

DOI: 10.4236/jhepgc.2024.102041, PP. 681-692

Keywords: Interstellar Mission, Stellar Abundance, Habitability, Hypatia Stellar Catalog, DNA-Star

Full-Text   Cite this paper   Add to My Lib

Abstract:

The possibility of the life origin in the stellar systems, located at a distance of ~200 pc from the solar system, was investigated. The stars, in the spectrums of which C (carbon), O (oxygen), N (nitrogen), and P (phosphorus) are found, are called DNA-stars. Based on stellar abundances a new method for searching for habitable exoplanets has been developed and a list of 48 DNA-stars in the solar neighborhood, on which life is possible, has been defined. The quota of DNA-stars is equal 1.3% of the total amount of Hypatia Stellar Catalog. Only three DNA-stars out of selected 48 stars belong to the spectral class as our Sun (G2V). The closest to the solar system is the DNA-star with the number HIP 15510, which belongs to the G8V class and is 6 pc away from the solar system. Nine DNA-stars, which have the highest chemical similarity with solar spectrum, were identified. It is identified that one of these nine stars, HIP 24681, has six planets.

References

[1]  NASA (2022) Dataset: Exoplanet Archive.
http://exoplanetarchive.ipac.caltech.edu
[2]  Seager, S. and Deming, D. (2010) Exoplanet Atmospheres. The Annual Review of Astronomy and Astrophysics, 48, 631-672.
https://doi.org/10.1146/annurev-astro-081309-130837
[3]  Seager, S. (2013) Exoplanet Atmospheres. Science, 340, 577-581.
https://doi.org/10.1126/science.1232226
[4]  Rice, K. (2014) The Detection and Characterization of Extrasolar Planets. MDPI Challenges, 5, 296-323.
https://doi.org/10.3390/challe5020296
[5]  Seager, S. and Bains, W. (2015) The Search for Signs of Life on Exoplanets at the Interface of Chemistry and Planetary Science. Science Advances, 1, e1500047.
https://doi.org/10.1126/sciadv.1500047
[6]  Schwieterman, E.W., Kiang, N.Y., Parenteau, M.N., et al. (2018) Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. Astrobiology, 18, 663-707.
https://doi.org/10.1089/ast.2017.1729
[7]  Quanz, S.P., Absil, O., Benz, W., et al. (2022) Atmospheric Characterization of Terrestrial Exoplanets in the Mid-Infrared: Biosignatures, Habitability, and Diversity. Experimental Astronomy, 54, 1197-1221.
https://doi.org/10.1007/s10686-021-09791-z
[8]  Burbidge, E.M., Burbidge, G.R., Fowler, W.A. and Hoyle, F. (1957) Synthesis of the Elements in Stars. Reviews of Modern Physics, 29, 547-650.
https://doi.org/10.1103/revmodphys.29.547
[9]  Kobayashi, C., Karakas, A.I. and Lugaro, M. (2020) The Origin of Elements from Carbon to Uranium. The Astrophysical Journal, 900, Article No. 179.
https://doi.org/10.3847/1538-4357/abae65
[10]  Safronov, A.N. (2024) Life Origin in the Milky Way Galaxy: I. The Stellar Nucleogenesis of Elements Necessary for the Life Origin. Journal of High Energy Physics, Gravitation and Cosmology, 10, 647-680.
https://doi.org/10.4236/jhepgc.2024.102040
[11]  Safronov, A.N. (2024) Life Origin in the Milky Way Galaxy: III. Spatial Distribution of Overheated Stars in the Solar Neighborhood. Journal of High Energy Physics, Gravitation and Cosmology, 10, 693-709.
https://doi.org/10.4236/jhepgc.2024.102042
[12]  Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. and Stanier, R.Y. (1979) Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Journal of General Microbiology, 111, 1-61.
https://doi.org/10.1099/00221287-111-1-1
[13]  Hinkel, N.R., Timmes, F.X., Youngm P.A., Pagano, M.D. and Turnbull, M.C. (2020) Dataset: Stellar Abundances in the Solar Neighborhood: The Hypatia Catalog.
https://www.hypatiacatalog.com/hypatia/default/launch
[14]  Lodders, K. (2010) Solar System Abundances of the Elements. In: Astrophysics and Space Science Proceedings, Springer-Verlag, Berlin, 379-417.
[15]  Hinkel, N.R., Timmes, F.X., Young, P.A., Pagano, M.D. and Turnbull, M.C. (2014) Stellar Abundances in the Solar Neighborhood: The Hypatia Catalog. The Astronomical Journal, 148, Article No. 54.
https://doi.org/10.1088/0004-6256/148/3/54
[16]  Hinkel, N.R., Young, P.A., Pagano, M.D., Desch, S.J., Anbar, A.D., Adibekyan, V., Blanco-Cuaresma, S., Carlberg, J.K., Mena, E.D., Liu, F., Nordlander, T., Sousa, S.G., Korn, A., Gruyters, P., Heiter, U., Jofr, P., Santos, N.C. and Soubiran, C. (2016) A Comparison of Stellar Elemental Abundance Techniques and Measurements. The Astrophysical Journal Supplement Series, 226, Article No. 4.
https://doi.org/10.3847/0067-0049/226/1/4
[17]  Hinkel, N.R., Mamajek, E.E., Turnbull, M.C., Osby, E., Shkolnik, E.L., Smith, G.H., Klimasewski, A., Somers, G. and Desch, S.J. (2017) A Catalog of Stellar Unified Properties (CATSUP) for 951 FGK-Stars within 30 pc. The Astrophysical Journal, 848, Article No. 34.
https://doi.org/10.3847/1538-4357/aa8b0f
[18]  Caffau, E., Bonifacio, P., Faraggiana, R. and Steffen, M. (2011) The Galactic Evolution of Phosphorus. Astronomy & Astrophysics, 532, A98.
https://doi.org/10.1051/0004-6361/201117313
[19]  Maas, Z.G., Cescutti, G. and Pilachowski, C.A. (2019) Phosphorus Abundances in the Hyades and Galactic Disk. The Astrophysical Journal, 158, Article No. 219.
https://doi.org/10.3847/1538-3881/ab4a1a
[20]  Butler, R.P., Wright, J.T., Marcy, G.W., Fischer, D.A., Vogt, S.S., Tinney, C.G., Jones, H.R.A., Carter, B.D., Johnson, J.A., McCarthy, C. and Penny, A.J. (2006) Catalog of Nearby Exoplanets. The Astrophysical Journal, 646, 505-522.
https://doi.org/10.1086/504701
[21]  Safronov, A.N. (2020) A New View of the Mass Extinctions and the Worldwide Floods. International Journal of Geosciences, 11, 251-287.
https://doi.org/10.4236/ijg.2020.114014

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413