全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Profile of Multidrug Resistant Bacteria in Bukavu Hospitals and Antimicrobial Susceptibility to Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis and Staphylococcus aureus

DOI: 10.4236/aim.2024.144015, PP. 209-225

Keywords: Prevalence, Antimicrobials, Multi-Resistance, Bacterial Sensitivity, Bukavu, DRC

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective: To evaluate the spread of Multidrug-Resistant (MDR) bacterial infections in Bukavu hospitals and test antimicrobial susceptibility patterns of some isolates to usual marketed antibiotics. Methods: The prevalence of MDR strains was determined by using general antimicrobial susceptibility data collected from 3 hospital laboratories. The susceptibility of some isolates to usual antibiotics was processed by agar diffusion method with standard E. coli ATCC8739 and standard antibiotics discs as controls. The tested antibiotics were ampicillin, ceftriaxone, gentamicin, chloramphenicol and ciprofloxacin. Results: At the 3 hospitals, 758 tests were realized in urine, pus, stool, FCV, blood, LCR, split and FU specimens; 46 strains were unidentified and 712 strains were identified. Of 712 identified strains, 223 (31.4%) were MDR or XDR strains including Escherichia coli, Klebsiella pneumoniae, Enterobacter, Proteus mirabilis, Salmonella enterica, Pseudomonas aeruginosa, Citrobacter freundii, Morganella morganii, Enterococcus faecalis and E. faecium, Neisseria gonorrohoae, Staphylococcus aureus, coagulase-negative, staphylococci, Streptococcus pneumoniae and Streptococcus pyogenes. Of the infected patients, 36 (21.5%) children were under 16 years and 188 (78.5%) adults were predominately women (58.5%). The susceptibility test showed that all strains but S. aureus were resistant to ampicillin and amoxicillin and ciprofloxacin. Gentamicin, ceftriaxone, and chloramphenicol remain partially active (27% - 80%) against P. mirabilis, E. coli and P. aeruginosa. The resistance is more likely related to strain mutation than to pharmaceutical quality of the antibiotics prescribed. Conclusion: Both data from hospital laboratories and in vitro post-testing findings

References

[1]  Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., Harbarth, S., Hindler, J.F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D.L., Rice, L.B., Stelling, J., Struelens, M.J., Vatopoulos, A., Weber, J.T. and Monnet, D.L. (2012) Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clinical Microbiology and Infection, 18, 268-281.
https://doi.org/10.1111/j.1469-0691.2011.03570.x
[2]  Leopold, S.J., van Leth, F., Tarekegn, H. and Schultsz, C. (2014) Antimicrobial Drug Resistance among Clinically Relevant Bacterial Isolates in Sub-Saharan Africa: A Systematic Review. Journal of Antimicrobial Chemotherapy, 69, 2337-2353.
https://doi.org/10.1093/jac/dku176
[3]  Anderson, D.J., Moehring, R.W., Sloane, R., Schmader, K.E., Weber, D.J., Fowler Jr., V.G., Smathers, E. and Sexton, D.J. (2014) Bloodstream Infections in Community Hospitals in the 21st Century: A Multicenter Cohort Study. PLOS ONE, 9, e91713.
https://doi.org/10.1371/journal.pone.0091713
[4]  Alam, M.T., Read, T.D., Petit III, R.A., Boyle-Vavra, S., Miller, L.G., Eells, S.J., Daum, R.S. and David, M.Z. (2015) Transmission and Microevolution of USA300 MRSA in U.S. Households: Evidence from Whole-Genome Sequencing. mBio, 6, e00054.
https://doi.org/10.1128/mBio.00054-15
[5]  WHO (2018) Antimicrobial Resistance.
http://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
[6]  Beena, E.T., Shanmugam, P.., Malaisamy, M., Ovung, S., Suresh, C., Subbaraman, R., Adinarayanan, S. and Nagarajan, K. (2016) Psycho-Socio-Economic Issues Challenging Multidrug Resistant Tuberculosis Patients: A Systematic Review. PLOS ONE, 11, e0147397.
https://doi.org/10.1371/journal.pone.0147397
[7]  Agaba, P., Tumukunde, J., Tindimwebwa, J.V.B. and Kwizera, A. (2017) Nosocomial Bacterial Infections and Their Antimicrobial Susceptibility Patterns among Patients in Ugandan Intensive Care Units: A Cross Sectional Study. BMC Research Notes, 10, Article No. 349.
https://doi.org/10.1186/s13104-017-2695-5
[8]  Centers for Disease Control (CDC) and Prevention and Food and Drug Administration, National Institutes of Health (2013) A Public Health Action Plan to Combat Antimicrobial Resistance. Part 1: Domestic Issues.
https://www.cdc.gov/drugresistance/pdf/aractionplan-archived.pdf
[9]  Dekraker, M., Davey, P. and Grundmann, H. (2011) Mortality and Hospital Stay Associated with Resistant Staphylococcus aureus and Escherichia coli Bacteremia: Estimating the Burden of Antibiotic Resistance in Europe. PLOS Medicine, 8, e1001104.
https://doi.org/10.1371/journal.pmed.1001104
[10]  Van den Hof, S., Collins, D., Hafidz, F., Beyene, D., Tursynbayeva, A. and Tiemersma, E. (2016) The Socioeconomic Impact of Multidrug Resistant Tuberculosis on Patients: Results from Ethiopia, Indonesia and Kazakhstan. BMC Infectious Diseases, 16, Article No. 470.
https://doi.org/10.1186/s12879-016-1802-x
[11]  Bell, B.G., et al. (2014) A Systematic Review and Meta-Analysis of the Effects of Antibiotic Consumption on Antibiotic Resistance. BMC Infectious Diseases, 14, Article No. 13.
https://doi.org/10.1186/1471-2334-14-13
[12]  Habyalimana, V., Kalenda, N.T., Mbinze, J.M., Dispas, A., Loconon, A.Y., Sacré, P.Y., Widart, J., De Tullio, P., Counerotte, S., Kadima, N.J.L., Ziemons, E., Hubert, P. and Marini, R.D.N. (2015) Analytical Tools and Strategic Approach to Detect Poor Quality Medicines, Identify Unknown Components, and Timely Alerts for Appropriate Measures: Case Study of Antimalarial Medicines. American Journal of Analytical Chemistry, 6, 977-994.
https://doi.org/10.4236/ajac.2015.613093
[13]  Kadima, J.N., Nyandwi, J.B., Kayitana, C.I. and Mashaku, A. (2016) Assessing Pharmaceutical Equivalence of Generic Antibiotics Using in Vitro Antimicrobial Susceptibility of Some Hospital Strains in Rwanda. Journal of Advances in Medicine and Medical Research, 15, 1-8.
https://doi.org/10.9734/BJMMR/2016/25137
[14]  Vallée, M. (2015) Resistance aux β-lactamines a large spectre chez les bactéries à gram négatif/Épidémiologie et diagnostic. Master’s Thesis, Université Laval, Québec.
[15]  Lupande-Mwenebitu, D., Baron, S.A., Nabti, L.Z., Lunguya-Metila, O., Lavigne, J.P., Rolain, J.M. and Diene, S.M. (2020) Current Status of Resistance to Antibiotics in the Democratic Republic of the Congo: A Review. Journal of Global Antimicrobial Resistance, 22, 818-825.
https://doi.org/10.1016/j.jgar.2020.07.008
[16]  Kashosi, T.M., Muhandule, A.B., Mwenebitu, D.L., Mihuhi, N., Mutendela, J.K. and Mubagwa, K. (2018) Antibiotic Resistance of Salmonella spp Strains Isolated from Blood Cultures in Bukavu, Democratic Republic of the Congo. Pan African Medical Journal, 29, Article 42.
https://doi.org/10.11604/pamj.2018.29.42.13456
[17]  Bunduki, G.K., Katembo, J.M. and Kamwira, I.S. (2019) Antimicrobial Resistance in a War-Torn Country: Lessons Learned in the Eastern Democratic Republic of the Congo. One Health, 9, Article ID: 100120.
https://doi.org/10.1016/j.onehlt.2019.100120
[18]  EUCAST (2014) Détermination de la sensibilité aux antibiotiques. Méthode EUCAST de Diffusion en Gélose, Version 4.0.
https://www.sfm-microbiologie.org/wp-content/uploads/2019/02/French-Disk_method_description_v-4.0_June-2014.pdf
[19]  Clinical and Laboratory Standards Institute (2012) Performance Standards for Antimicrobial Susceptibility Testing: 22nd Informational Supplement. CLSI Document M100-S22, Clinical and Laboratory Standards Institute, Wayne.
[20]  Sabin, K., Johnston, L.G. and Sabin, K. (2010) Échantillonnage déterminé selon les répondants pour les populations difficiles à joindre. Methodological Innovations, 5, 38-48.
https://doi.org/10.4256/mio.2010.0017a
[21]  Siegel, J.D., Rhinehart, E., Jackson, M., Chiarello, L. and Health Care Infection Control Practices Advisory Committee (2007) 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Health Care Settings. American Journal of Infection Control, 35, S65-S164.
https://doi.org/10.1016/j.ajic.2007.10.007
[22]  Nadia Prisca, Z.C.I. (2004) Évaluation de la sensibilité aux antibiotiques des bactéries isolées des infections urinaires au laboratoire de bactériologie. Master’s Thesis, Université du Mali, Mali.
[23]  De Mouy, D., Cavallo, J.D., Fabre, R., Garrabe, E., Grobost, F., Armengaud, M. and Labia, R. (1997) Les entérobactéries isolées d’infections urinaires en pratique de ville: Étude AFORCOPIBIO 1995. Médecine et Maladies Infectieuses, 27, 642-645.
https://doi.org/10.1016/S0399-077X(97)80216-8
[24]  Azmoun, S. (2016) Epidemiologie de la resistance bacterienne aux antibiotiques au Chu de Marrakech. Master’s Thesis, Université Cadi Ayyad, Marrakech.
[25]  Romli, A., Derfoufi, O., Omar, C., Hajjam, Z. and Zouhdi, M. (2011) Enterobacteria ESBL Urinary Infections: Epidemiology and Resistance. Maroc Médical, 33, 12-16.
[26]  Basak, S., Singh, P. and Rajurkar, M. (2016) Multidrug Resistant and Extensively Drug Resistant Bacteria. Journal of Pathogens, 2016, Article ID: 4065603.
https://doi.org/10.1155/2016/4065603
[27]  Teklu, D.S., Negeri, A.A., Legese, M.H., Bedada, T.L., Woldemariam, H.K. and Tullu, K.D. (2019) Extended-Spectrum β-Lactamase Production and Multi-Drug Resistance among Enterobacteriaceae Isolated in Addis Ababa, Ethiopia. Antimicrobial Resistance & Infection Control, 8, Article No. 39.
https://doi.org/10.1186/s13756-019-0488-4
[28]  Dhillon, R.H.P. and Clark, J. (2012) ESBLs: A Clear and Present Danger? Critical Care Research and Practice, 2012, Article ID: 625170.
https://doi.org/10.1155/2012/625170
[29]  Holmes, R.K., Minshew, B.H., Gould, K. and Sanford, J.P. (1974) Resistance of Pseudomonas aeruginosa to Gentamicin and Related Aminoglycoside Antibiotics. Antimicrobial Agents and Chemotherapy, 6, 253-262.
https://doi.org/10.1128/AAC.6.3.253
[30]  Tiouit, D., Naim, M. and Amhis, W. (2001) Traitement antibiotique des infections urinaires. Médecine du Maghreb, No. 91, 35-38.
http://psychaanalyse.com/pdf/infections_urinaires_ttmt_antibiotiques.pdf
[31]  Bathily Diarra, M. (2002) Sensibilité aux antibiotiques des bactéries à gram négatif isolées d’infections urinaires à l’Hôpital National du Point G. Thèse de Doctorant, Université du Centre Hospitalier de Point G, Bamako.
[32]  Krause, K.M., Serio, A.W., Kane, T.R. and Connolly, L.E. (2016) Aminoglycosides: An Overview. Cold Spring Harbor Perspectives in Medicine, 6, a027029.
https://doi.org/10.1101/cshperspect.a027029
[33]  Waterer, G.W. and Wunderink, R.G. (2001) Increasing Threat of Gram-Negative Bacteria. Critical Care Medicine, 29, N75-N81.
https://doi.org/10.1097/00003246-200104001-00004
[34]  Peirano, G., Schreckenberger, P.C. and Pitout, J.D. (2011) Characteristics of NDM-1-Producing Escherichia coli Isolates That Belong to the Successful and Virulent Clone ST131. Antimicrobial Agents and Chemotherapy, 55, 2986-2988.
https://doi.org/10.1128/AAC.01763-10
[35]  Okeke, I.N., Laxminarayan, R., Bhutta, Z.A., Duse, A.G., Jenkins, P., O’Brien, T.F., Pablos-Mendez, A. and Klugman, K.P. (2005) Antimicrobial Resistance in Developing Countries. Part I: Recent Trends and Current Status. The Lancet Infectious Diseases, 5, 481-493.
https://doi.org/10.1016/S1473-3099(05)70189-4
[36]  Marchou, B., Hamzehpour, M.M., Lucain, C. and Pèchere, J.C. (1987) Development of β-Lactam-Resistant Enterobacter cloacae in Mice. Journal of Infectious Diseases, 156, 369-373.
https://doi.org/10.1093/infdis/156.2.369
[37]  Doi, Y., Park, Y.S., Rivera, J.I., Adams-Haduch, J.M., Hingwe, A., Sordillo, E.M., Lewis II, J.S., Howard, W.J., Johnson, L.E., Polsky, B., Jorgensen, J.H., Richter, S.S., Shutt, K.A. and Paterson, D.L. (2013) Community-Associated Extended-Spectrum β-Lactamase-Producing Escherichia coli Infection in the United States. Clinical Infectious Diseases, 56, 641-648.
https://doi.org/10.1093/cid/cis942
[38]  Nicolas-Chanoine, M.H., Bertrand, X. and Madec, J.Y. (2014) Escherichia coli ST131, an Intriguing Clonal Group. Clinical Microbiology Reviews, 27, 543-574.
https://doi.org/10.1128/CMR.00125-13
[39]  Shon, A.S., Bajwa, R.P. and Russo, T.A. (2013) Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae: A New and Dangerous Breed. Virulence, 4, 107-118.
https://doi.org/10.4161/viru.22718

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133