全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同温度下填料床反应器处理高硫酸盐废水的试验研究
Study on the Treatment of High Sulfate Wastewater with Packed-Bed Reactors at Different Temperatures

DOI: 10.12677/aep.2024.142035, PP. 261-266

Keywords: 硫酸盐,填料床生物反应器,温度,EPS
Sulfate
, Packed-Bed Bioreactor, Temperature, EPS

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究采用升流式填充床厌氧反应器,考察温度变化对反应器处理高硫酸盐废水性能的影响。结果表明,在COD/SO42-为1和HRT为16 h的实验条件下,当反应器温度为30℃时,硫酸盐和有机物均得到高效去除,分别达到98.60%和89.01%,当温度降低到10℃时,硫酸盐和有机物去除率大幅度下降,最低降至41.45%和39.93%。温度的降低导致胞外聚合物(EPS)中多糖(PS)和蛋白质(PN)含量同步增加,由于葡萄糖作为碳源能够促进微生物分泌更多的胞外酶,从而导致EPS中的PN含量大于PS含量。
The effect of temperature changes on the pollution removal performance was investigated with an upflow packed bed anaerobic reactor in treating high sulfate wastewater in this study. The results showed that under the experimental conditions: COD/SO42-?ratio of 1, HRT of 16 hours and reactor temperature of 30?C, both sulfate and organic matter were efficiently removed, reaching 98.60% and 89.01%, respectively. When the temperature drops to 10?C, the removal rates of sulfate and organic matter significantly decrease, with the lowest dropping to 41.45% and 39.93%. The decrease in temperature could lead to a synchronous increase in the content of polysaccharides (PS) and proteins (PN) in extracellular polymers (EPS). Due to glucose serving as a carbon source, it could promote the secretion of more extracellular enzymes by microorganisms, resulting in a higher PN content than PS content in EPS.

References

[1]  Miao, Y., Liao, R., Zhang, X.-X., Wang, Y., Wang, Z., et al. (2015) Metagenomic Insights into Cr(VI) Effect on Microbial Communities and Functional Genes of on Expanded Granular Sludge Bed Reactor Treating High-Nitrate Wastewater. Water Research, 76, 43-52.
https://doi.org/10.1016/j.watres.2015.02.042
[2]  Liao, R., Shen, K., Li, A.-M., Shi, P., Li, Y, et al. (2013) High-Nitrate Wastewater Treatment in an Expanded Granular Sludge Bed Reactor and Microbial Diversity Using 454 Pyrosequencing Analysis. Bioresource Technology, 134, 190-197.
https://doi.org/10.1016/j.biortech.2012.12.057
[3]  Daugherty, J.L., Huff, J.E., Ladieu, S.D. and Martch, D. (2000) Impact of a High Sulfate and TDS Industrial Discharge on Municipal Wastewater Treatment. Proceedings of the Water Environment Federation, 9, 708-735.
https://doi.org/10.2175/193864700784545973
[4]  Zhu, G., Zhang, S., Huang, H., Liu, Q., Yang, Z., Zhang, J., Tuo, W.U. and Huang, Y.I. (2010) Induced H2S Formation during Steam Injection Recovery Process of Heavy Oil from the Liaohe Basin, NE China. Journal of Petroleum Science & Engineering, 71, 30-36.
https://doi.org/10.1016/j.petrol.2010.01.002
[5]  Lu, X., Zhen, G., Ni, J., Hojo, T., Kubota, K. and Li, Y.Y. (2016) Effect of Influent COD/ Ratios on Biodegradation Behaviors of Starch Wastewater in an Upflow Anaerobic Sludge Blanket (UASB) Reactor. Bioresource Technology, 214, 175-183.
https://doi.org/10.1016/j.biortech.2016.04.100
[6]  Chou, H.H., Huang, J.S., Chen, S.K. and Lee, M.C. (2011) Process Kinetics of an Expanded Granular Sludge Bed Reactor Treating Sulfate-Containing Wastewater. Chemical Engineering Journal, 170, 233-240.
https://doi.org/10.1016/j.cej.2011.03.061
[7]  Nagpal, S., Chuichulcherm, S., Peeva, L. and Livingston, A. (2015) Microbial Sulfate Reduction in a Liquid-Solid Fluidized Bed Reactor. Biotechnology & Bioengineering, 70, 370-380.
https://doi.org/10.1002/1097-0290(20001120)70:4<370::AID-BIT2>3.3.CO;2-Z
[8]  任南琪, 王爱杰, 等. 厌氧生物技术原理与应用[M]. 北京: 化学工业出版社, 2004.
[9]  戴宏义, 程吉宁, 程海涛. 温度对硫酸盐还原菌(SRB)处理煤矿废水实验研究[J]. 山西建筑, 2012, 38(16): 119-120.
[10]  Zhang, J., Zhang, Y., et al. (2013) Enhanced Anaerobic Digestion of Organic Contaminants Containing Diverse Microbial Population by Combined Microbial Electrolysis Cell (MEC) and Anaerobic Reactor under Fe(III) Reducing Conditions. Bioresource Technology, 136, 273-280.
https://doi.org/10.1016/j.biortech.2013.02.103
[11]  Moshe, H., Seoktae, K. and Menachem, E. (2009) Role of Extracellular Polymeric Substances (EPS) in Biofouling of Reverse Osmosis Membranes. Environmental Science & Technology, 43, 4393-4398.
https://doi.org/10.1021/es900087j
[12]  Sponza, D.T. (2003) Investigation of Extracellular Polymer Substances (EPS) and Physicochemical Properties of Different Activated Sludge Flocs under Steady-State Conditions. Enzyme & Microbial Technology, 32, 375-385.
https://doi.org/10.1016/S0141-0229(02)00309-5
[13]  Fr?lund, B., Griebe, T. and Nielsen, P.H. (1995) Enzymatic-Activity in the Activated-Sludge Floc Matrix. Applied Microbiology & Biotechnology, 43, 755-761.
https://doi.org/10.1007/BF00164784
[14]  Laspidou, C.S. and Rittmann, B.E. (2002) A Unified Theory for Extracellular Polymeric Substances, Soluble Microbial Products, and Active and Inert Biomass. Water Research, 36, 2711-2720.
https://doi.org/10.1016/S0043-1354(01)00413-4

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413