全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

河北省“十四五”燃煤电厂主要大气污染物减排潜力分析
Analysis of Air Pollutant Emission Reduction Potential of Coal-Fired Power Plants in Hebei Province during the 14th Five-Year Plan Period

DOI: 10.12677/aep.2024.142036, PP. 267-274

Keywords: 河北省,燃煤电厂,减排,“十四五”,情景分析
Hebei Province
, Coal-Fired Power Plants, Emission Control, 14th Five-Year Plan, Scenario Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

中国广泛的经济增长导致严重的空气污染事件显著增多,尤其是在主要城市地区,燃煤电厂是一个特别重要的排放类别。探索合适的大气污染治理策略,同时保持电力行业的可持续发展,对改善环境质量和公众健康具有重要意义。本研究以2020年河北省81台燃煤机组装机清单为例,在研究燃煤电厂主要大气污染物排放状况的基础上,综合考虑了其技术政策要求和措施,对“十四五”期间燃煤电厂的新增排放量进行了预测。为了更深入地探究减排潜力,本研究设计了三个减排情景,分别是基于淘汰落后机组情景、超低排放情景以及技术可行情景。结果表明:总排放量分别减少39.5% (SO2)、52.9% (NOx)、27.8% (PM10)和24.5% (PM2.5)。通过这些情景分析,我们量化了“十四五”期间的减排潜力,并评估了燃煤电厂在该时期的减排空间,进一步为区域大气污染物控制提供思路和方法。
China’s rapid economic growth has resulted in increasingly severe air pollution incidents, particularly in major urban areas where coal-fired power plants constitute a significant emission source. It is of paramount importance to explore appropriate strategies for air pollution control while ensuring the sustainable development of the power industry, aiming at improving environmental quality and public health. Taking into consideration the technical policy requirements and measures of the thermal power industry, this study predicts the new emissions from the thermal power sector during the “14th Five-Year Plan” period by examining the main air pollutant emissions from 81 coal-fired units installed in Hebei Province in 2020. To delve deeper into exploring emission reduction potential, three scenarios were designed including phasing out outdated units, implementing ultra-low emission standards, and adopting energy-saving technologies. The results demonstrate reductions of 39.5% (SO2), 52.9% (NOx), 27.8% (PM10), and 24.5% (PM2.5) in total emissions respectively. Through analyzing these scenarios, we quantify the emission reduction potential during the “14th Five-Year Plan” period and evaluate opportunities for reducing emissions from coal-fired power plants within this timeframe, thereby providing insights and methodologies for regional air pollutant control.

References

[1]  Zhang, Q. and Crooks, R. (2012) Toward an Environmentally Sustainable Future: Country Environmental Analysis of the People’s Republic of China. Asian Development Bank.
[2]  Streets, D.G., Bond, T.C., et al. (2003) An Inventory of Gaseous and Primary Aerosol Emissions in Asia in the Year 2000. Journal of Geophysical Research, 108, 30-31.
https://doi.org/10.1029/2002JD003093
[3]  Ohara, T., Akimoto, H., et al. (2007) An Asian Emission Inventory of Anthropogenic Emission Sources for the Period 1980-2020. Atmospheric Chemistry and Physics, 7, 6483-6902.
https://doi.org/10.5194/acpd-7-6843-2007
[4]  Cofala, J., Amann, M., Klimont, Z., Kupiainen, K. and H?glund-Isaksson, L. (2007) Scenarios of Global Anthropogenic Emissions of Air Pollutants and Methane until 2030. Atmospheric Environment, 41, 8486-8499.
https://doi.org/10.1016/j.atmosenv.2007.07.010
[5]  Zhao, Y., Wang, S., Duan, L., et al. (2008) Primary Air Pollutant Emissions of Coal-Fired Power Plants in China: Current Status and Future Prediction. Atmospheric Environment, 42, 8442-8452.
https://doi.org/10.1016/j.atmosenv.2008.08.021
[6]  Li, M., Zhang, Q., et al. (2017) MIX: A Mosaic Asian Anthropogenic Emission Inventory under the International Collaboration Framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 17, 935-963.
https://doi.org/10.5194/acp-17-935-2017
[7]  Hao, J., Tian, H. and Lu, Y. (2002) Emission Inventories of NOx from Commercial Energy Consumption in China, 1995-1998. Environmental Science & Technology, 36, 552-560.
https://doi.org/10.1021/es015601k
[8]  Zhang, Q., Streets, D.G., et al. (2007) NOx Emission Trends for China, 1995-2004: The View from the Ground and the View from Space. Journal of Geophysical Research, 112, D22306.
https://doi.org/10.1029/2007JD008684
[9]  Shen, J., Zheng, C., Yang, L., Xu, L., Zhang, Y., Liu, S. and Gao, X. (2019) Atmospheric Emission Inventory of SO3 from Coal-Fired Power Plants in China in the Period 2009-2014. Atmospheric Environment, 197, 14-21.
https://doi.org/10.1016/j.atmosenv.2018.10.008
[10]  Liang, X., Chen, X., Zhang, J., Shi, T., Sun, X., Fan, L. and Ye, D. (2017) Reactivity-Based Industrial Volatile Organic Compounds Emission Inventory and Its Implications for Ozone Control Strategies in China. Atmospheric Environment, 162, 115-126.
https://doi.org/10.1016/j.atmosenv.2017.04.036
[11]  Gao, C., Gao, W., Song, K., Na, H., Tian, F. and Zhang, S. (2019) Spatial and Temporal Dynamics of Air-Pollutant Emission Inventory of Steel Industry in China: A Bottom-Up Approach. Resources, Conservation and Recycling, 143, 184-200.
https://doi.org/10.1016/j.resconrec.2018.12.032
[12]  Chen, L., Li, L., Yang, X., Zhang, Y., Chen, L. and Ma, X. (2019) Assessing the Impact of Land-Use Planning on the Atmospheric Environmentthrough Predicting the Spatial Variability of Airborne Pollutants. International Journal of Environmental Research and Public Health, 16, 172.
https://doi.org/10.3390/ijerph16020172
[13]  Li, L., Zhou, G. and Ji, H. (2010) Study of Co-Benefits Assessment of Pollution Reduction: A Case Study in Panzhihua. China Population, Resources and Environment, 20, 91-95.
[14]  Mao, X., Zeng, A., Hu, T., et al. (2011) Study of Coordinate Control Effect Assessment of Technological Measures for Emissions Reduction. China Population, Resources and Environment, 21, 1-7.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413