全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

未来气候变化对石蒜分布的影响
Effects of Future Climate Change on Lycoris radiata Distribution

DOI: 10.12677/wjf.2024.132018, PP. 118-127

Keywords: 最大熵模型,石蒜,未来气候变化,物种分布,降水
Maximum Entropy Model
, Lycoris radiata, Future Climate Change, Species Distribution, Precipitation

Full-Text   Cite this paper   Add to My Lib

Abstract:

石蒜(Lycoris radiata)又名曼珠沙华,是典型的多年生草本鳞茎植物,具有独特的观赏和药用价值。我国是石蒜的主要分布区,探究未来气候变化对石蒜适生区的影响,对保护和利用石蒜种质资源有重要意义。本研究基于我国554个石蒜分布点和4种环境因子(气温、降水、海拔和土壤pH)数据,通过最大熵模型(MaxEnt)预测石蒜的当前潜在适生区,及其在2070年不同气候变化情景下(SSP1-2.6和SSP5-8.5)适生区面积的变化。结果表明:影响石蒜分布的主要环境因子是最干燥季度降水量、年降水量和气温季节性,累计贡献率超过80%;当前气候下石蒜适生区广布于我国南方各省,浙江、江西与湖南省是高适生区;而在人类以消极态度面对气候变化时,石蒜在中、低适生区如江苏、安徽、湖北、四川和两广地区的分布面积将大幅缩减22%以上。建议做好目前中、低适生区石蒜种质资源的优先保护与迁地保护工作,并根据适生区变化调整栽培种植选地规划。
Lycoris radiata, also known as red spider lily, is a typical perennial bulbous perennial herb with unique ornamental and medicinal value. China is the main distribution area of L. radiata, so it is of great significance to study the influence of climate change on the suitable area of L. radiata in China. Based on 554 distribution sites and four environmental factors (temperature, precipitation, elevation and soil pH), the maximum entropy model (MaxEnt) was used to predict the changes in current and future suitable areas of L. radiata under two climate change backgrounds (SSP1-2.6 and SSP5- 8.5) in 2070s. The results showed that precipitation in the driest season, annual precipitation and temperature seasonality were the main environmental factors affecting the distribution of L. radiata, with a cumulative contribution of more than 80%. Under the current climate, the suitable areas of L. radiata are widely distributed in the south of China, and Zhejiang, Jiangxi and Hunan provinces are highly suitable areas. However, when humans face climate change with a negative attitude, the distribution area of L. radiata in the middle and low suitable areas, such as Jiangsu, Anhui, Hubei, Sichuan, Guangxi and Guangdong, will be drastically reduced by more than 22%. It is recommended to implement the prioritization schemes and relocation protection of the germplasm resources of L. radiata in the middle and low suitable areas, and the cultivation site selection planning should be adjusted according to the changes of suitability areas under climate changes.

References

[1]  Guisan, A. and Thuiller, W.J. (2005) Predicting Species Distribution: Offering More than Simple Habitat Models. Ecology Letters, 8, 993-1009.
https://doi.org/10.1111/j.1461-0248.2005.00792.x
[2]  Zhao, Y., Deng, X., Xiang, W., et al. (2021) Predicting Potential Suitable Habitats of Chinese Fir under Current and Future Climatic Scenarios Based on Maxent Model. Ecological Informatics, 64, Article 101393.
https://doi.org/10.1016/j.ecoinf.2021.101393
[3]  Anderson, R.P.A. (2013) Framework for Using Niche Models to Estimate Impacts of Climate Change on Species Distributions. Annals of the New York Academy of Sciences, 1297, 8-28.
https://doi.org/10.1111/nyas.12264
[4]  Bergmann, F. (1978) The Allelic Distribution at an Acid Phosphatase Locus in Norway Spruce (Picea abies) Along Similar Climatic Gradients. Theoretical and Applied Genetics, 52, 57-64.
https://doi.org/10.1007/BF00281317
[5]  Lesica, P. (2014) Arctic-Alpine Plants Decline over Two Decades in Glacier National Park, Montana, USA. Arctic Antarctic and Alpine Research, 46, 327-332.
https://doi.org/10.1657/1938-4246-46.2.327
[6]  Li, J.J., Fan, G. and He, Y. (2020) Predicting the Current and Future Distribution of Three Coptis Herbs in China under Climate Change Conditions, Using the MaxEnt Model and Chemical Analysis. Science of the Total Environment, 698, Article 134141.
https://doi.org/10.1016/j.scitotenv.2019.134141
[7]  Olalla-Tarraga, M.A., McInnes, L., Bini, L.M., et al. (2011) Climatic Niche Conservatism and the Evolutionary Dynamics in Species Range Boundaries: Global Congruence across Mammals and Amphibians. Journal of Biogeography, 38, 2237-2247.
https://doi.org/10.1111/j.1365-2699.2011.02570.x
[8]  赵天荣, 施永泰, 蔡建岗, 等. 石蒜属植物的研究进展[J]. 北方园艺, 2008(4): 65-69.
[9]  毛志远, 张兆金, 周坚. 基于生态位模型的石蒜适生区预测[J]. 林业科技开发, 2014, 28(6): 50-53.
[10]  Cai, J.H., Fan, J.J., Wei, X.Y., et al. (2019) A Three-Dimensional Analysis of Summer Dormancy in the Red Spider Lily (Lycoris radiata). Hortscience, 54, 1459-1464.
https://doi.org/10.21273/HORTSCI14080-19
[11]  Xu, J.X., Li, Q.Z., Yang, L.Y., et al. (2020) Changes in Starch Synthesis and Metabolism within Developing Bulbs of Lycoris radiata during the Vegetative Growth Stage. Journal of Plant Growth Regulation, 39, 785-794.
https://doi.org/10.1007/s00344-019-10022-1
[12]  张露, 曹福亮. 石蒜属植物栽培技术研究进展[J]. 江西农业大学学报, 2001, 23(3): 375-378.
[13]  Cai, J.H., Fan, J.J., Wei, X.Y., et al. (2020) Differences in Floral Development between Lycoris radiata and Lycoris sprengeri. Science Asia, 46, 271-279.
https://doi.org/10.2306/scienceasia1513-1874.2020.032
[14]  梁玉莲, 延晓冬. RCPs情景下中国21世纪气候变化预估及不确定性分析[J]. 热带气象学报, 2016, 32(2): 183-192.
[15]  Phillips, S.J., Anderson, R.P. and Schapire, R.E. (2006) Maximum Entropy Modeling of Species Geographic Distributions. Ecological Modelling, 190, 231-259.
https://doi.org/10.1016/j.ecolmodel.2005.03.026
[16]  Elith, J.H., Graham, C.P., Anderson, R., et al. (2006) Novel Methods Improve Prediction of Species’ Distributions from Occurrence Data. Ecography, 29, 129-151.
https://doi.org/10.1111/j.2006.0906-7590.04596.x
[17]  徐垠, 胡之壁, 黄秀兰. 石蒜属见[M]//裴鉴, 丁志遵, 主编. 中国植物志. 北京: 科学出版社, 1985: 18-27.
[18]  Lv, Y., Gao, Y.K., Cui, Y.X., et al. (2022) Interfamily Wide Hybridization between Daylily (Hemerocallis, Xanthorrhoeaceae) and Lycoris (Lycoris, Amaryllidaceae). Plant Breeding, 141, 820-827.
https://doi.org/10.1111/pbr.13058
[19]  薛璟祺, 只艳玲, 王顺利, 等. 五种石蒜属植物的低温耐性研究[J]. 植物生理学报, 2015, 51(5): 721-728.
[20]  Boonyaritthongchai, P., Manuwong, S., Kanlayanarat, S., et al. (2008) Acceleration of Senescence by High Temperature Treatment in Lycoris (L. traubii × L. sanguinea) Leaf Sections. Journal of the Japanese Society for Horticultural Science, 77, 431-439.
https://doi.org/10.2503/jjshs1.77.431
[21]  Meng, P., Ge, Y., Cao, Q., et al. (2008) Growth and Photosynthetic Responses of Three Lycoris Species to Levels of Irradiance. Hortscience, 43, 134-137.
https://doi.org/10.21273/HORTSCI.43.1.134
[22]  Cai, J.H., Huang, Q.R., Cheng, Y.H., et al. (2012) Effects of Shading Level and Fertilization on the Yield and Quality of Lycoris radiata Cut Flower. Acta Pedologica Sinica, 49, 1459-1464.
[23]  沈明山, 陈睦传, 徐金森, 等. 石蒜的人工栽培[J]. 厦门科技, 1999(2): 21-22.
[24]  金雅琴, 黄雪芳, 李冬林, 等. 中国石蒜叶生长规律研究[J]. 北方园艺, 2009(12): 184-186.
[25]  蒋明敏, 徐晟, 夏冰, 等. 干旱胁迫下外源氯化钙、水杨酸和一氧化氮对石蒜抗旱性的影响[J]. 植物生理学报, 2012, 48(9): 909-916.
[26]  于磊. 不同石蒜(Lycoris radiata)种源叶片解剖特征及物候特征的比较研究[D]: [硕士学位论文]. 南昌: 江西农业大学, 2011.
[27]  Yan, Y., Li, Y., Wang, W.J., et al. (2017) Range Shifts in Response to Climate Change of Ophiocordyceps sinensis, a Fungus Endemic to the Tibetan Plateau. Biological Conservation, 206, 143-150.
https://doi.org/10.1016/j.biocon.2016.12.023
[28]  张晓玲, 李亦超, 王芸芸, 等. 未来气候变化对不同国家茶适宜分布区的影响[J]. 生物多样性, 2019, 27(6): 595-606.
[29]  Quan, M. and Liang, J. (2017) The Influences of Four Types of Soil on the Growth, Physiological and Biochemical Characteristics of Lycoris aurea (L’ Her.) Herb. Scientific Reports, 7, Article No. 43284.
https://doi.org/10.1038/srep43284
[30]  王磊. 石蒜属植物花期调控技术及开花生理研究[D]: [博士学位论文]. 南京: 南京林业大学, 2004.
[31]  李果, 沈泽昊, 应俊生. 中国裸子植物物种丰富度空间格局与多样性中心[J]. 生物多样性, 2009, 17(3): 272-279.
[32]  张文秀, 寇一翾, 张丽, 等. 采用生态位模拟预测濒危植物白豆杉5个时期的适宜分布区[J]. 生态学杂志, 2020, 39(2): 600-613.
[33]  Kraemer, B.M., Chandra, S., Dell, A.I., et al. (2017) Global Patterns in Lake Ecosystem Responses to Warming Based on the Temperature Dependence of Metabolism. Global Change Biology, 23, 1881-1890.
https://doi.org/10.1111/gcb.13459
[34]  Chardon, N.I., Cornwell, W.K., Flint, L.E., et al. (2015) Topographic, Latitudinal and Climatic Distribution of Pinus coulteri: Geographic Range Limits Are not at the Edge of the Climate Envelope. Ecography, 38, 590-601.
https://doi.org/10.1111/ecog.00780
[35]  唐宝琪, 延军平, 李双双, 等. 近55年来华东地区旱涝时空变化特征[J]. 长江流域资源与环境, 2016, 25(3): 497-505.
[36]  Shi, J., Cui, L.L. and Tian, Z. (2020) Spatial and Temporal Distribution and Trend in Flood and Drought Disasters in East China. Environmental Research, 185, Article 109406.
https://doi.org/10.1016/j.envres.2020.109406
[37]  Herben, T. and Klime?ová, J. (2020) Evolution of Clonal Growth Forms in Angiosperms. New Phytologist, 225, 999-1010.
https://doi.org/10.1111/nph.16188
[38]  Ottaviani, G., Molina-Venegas, R., Charles-Dominique, T., et al. (2020) The Neglected Belowground Dimension of Plant Dominance. Trends in Ecology & Evolution, 35, 763-766.
https://doi.org/10.1016/j.tree.2020.08.008
[39]  李芮芝, 胡希军, 韦宝婧, 等. 气候变化下中国八种梧桐属树种潜在适生区模拟[J]. 生态学报, 2023, 43(14): 5937-5955.
[40]  Dawson, T.P., Jackson, S.T., House, J.I., et al. (2011) Beyond Predictions: Biodiversity Conservation in a Changing Climate. Science, 332, 53-58.
https://doi.org/10.1126/science.1200303

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413