全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

脲酶诱导碳酸钙沉积(EICP)固化土体研究进展
Research Progress in Soil Solidified by Enzyme Induced Calcium Carbonate Precipitation (EICP)

DOI: 10.12677/hjce.2024.134042, PP. 374-382

Keywords: EICP,土体加固,脲酶,力学特性,作用机理
EICP
, Soil Reinforcement, Urease, Mechanical Characteristics, Action Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,脲酶诱导碳酸钙沉积(Enzyme Induced Calcium Carbonate Precipitation,简称EICP)技术在岩土领域得到广泛应用,作为一种加固土体的新型方法,EICP直接从植物中提取脲酶,催化尿素水解成碳酸根离子,与钙离子反应产生碳酸钙沉淀;所生成的游离脲酶可降解,不会对环境造成长期影响,且其尺寸小能透过孔隙更小的土体,生成碳酸钙过程中不易发生堵塞。本文从EICP的背景出发,研究了EICP的国外现状、固化土体力学特性及作用机理,为EICP固化土体进行了系统的总结。
In recent years, Enzyme Induced Calcium Carbonate Precipitation (EICP) technology has been widely used in the field of rock and soil. As a new method for soil reinforcement, EICP directly extracts urease from plants, and catalyzes the hydrolysis of urea into carbonate ion, which reacts with calcium ion to produce calcium carbonate precipitation; The generated free urease is degradable, and does not have a long-term impact on the environment. Its small size can penetrate the soil with smaller pores, and is not prone to blockage during the formation of calcium carbonate. In this paper, based on the background of EICP, the present situation of EICP abroad, the mechanical characteristics and mechanism of solidified soil were studied, and the soil solidified by EICP was systematically summarized.

References

[1]  李腾. 不同钙源EICP溶液改良黄土力学性能及微观机制研究[D]: [硕士学位论文]. 西安: 长安大学, 2022.
[2]  田威, 云伟, 党可欣, 等. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 2(28): 1-13.
[3]  Shen, D., Liu, Z., Song, Z., et al. (2023) Reinforcement Mechanism and Erosion Resistance of Loess Slope Using Enzyme Induced Calcite Precipitation Technique. Sustainability, 15, Article No. 1044.
https://doi.org/10.3390/su15021044
[4]  Chen, Y., Chai, S., Cai, D., et al. (2023) Experimental Study on Shear Mechanical Properties of Improved Loess Based on Rubber Particle Incorporation and EICP Technology. Frontiers in Earth Science, 11, Article ID: 1270102.
https://doi.org/10.3389/feart.2023.1270102
[5]  Wang, L., Cheng, W.C., Xue, Z.F., et al. (2023) Study on Cu-and Pb-Contaminated Loess Remediation Using Electrokinetic Technology Coupled with Biological Permeable Reactive Barrier. Journal of Environmental Management, 348, Article ID: 119348.
https://doi.org/10.1016/j.jenvman.2023.119348
[6]  Ahenkorah, I., Rahman, M.M., Karim, M.R., et al. (2023) Characteristics of MICP-and EICP-Treated Sands in Simple Shear Conditions: A Benchmarking with the Critical State of Untreated Sand. Géotechnique, 1-15.
https://doi.org/10.1680/jgeot.22.00329
[7]  Stocks-Fischer, S., Galinat, J.K. and Bang, S.S. (1999) Microbiological Precipitation of CaCO3. Soil Biology and Biochemistry, 31, 1563-1571.
https://doi.org/10.1016/S0038-0717(99)00082-6
[8]  Yasuhara, H., Neupane, D., Hayashi, K., et al. (2012) Experiments and Predictions of Physical Properties of Sand Cemented by Enzymatically-Induced Carbonate Precipitation. Soils and Foundations, 52, 539-549.
https://doi.org/10.1016/j.sandf.2012.05.011
[9]  Alotaibi, E., Arab, M.G., Abdallah, M., et al. (2022) Life Cycle Assessment of Biocemented Sands Using Enzyme Induced Carbonate Precipitation (EICP) for Soil Stabilization Applications. Scientific Reports, 12, Article No. 6032.
https://doi.org/10.1038/s41598-022-09723-7
[10]  Wang, Z., Zhang, N., Ding, J., et al. (2018) Experimental Study on Wind Erosion Resistance and Strength of Sands Treated with Microbial-Induced Calcium Carbonate Precipitation. Advances in Materials Science and Engineering, 2018, Article ID: 3463298.
https://doi.org/10.1155/2018/3463298
[11]  Nemati, M. and Voordouw, G. (2003) Modification of Porous Media Permeability, Using Calcium Carbonate Produced Enzymatically in Situ. Enzyme and Microbial Technology, 33, 635-642.
https://doi.org/10.1016/S0141-0229(03)00191-1
[12]  Jiang, X., Rutherford, C., Cetin, B., et al. (2020) Reduction of Water Erosion Using Bacterial Enzyme Induced Calcite Precipitation (BEICP) for Sandy Soil. Geo-Congress 2020: Biogeotechnics (GSP 320), Minneapolis, 25-28 February 2020, 104-110.
https://doi.org/10.1061/9780784482834.012
[13]  Alarifi, S.A., Mustafa, A., Omarov, K., et al. (2022) A Review of Enzyme-Induced Calcium Carbonate Precipitation Applicability in the Oil and Gas Industry. Frontiers in Bioengineering and Biotechnology, 10, Article ID: 900881.
https://doi.org/10.3389/fbioe.2022.900881
[14]  Almajed, A., Lateef, M.A., Moghal, A.A.B., et al. (2021) State-of-the-Art Review of the Applicability and Challenges of Microbial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP). Techniques for Geotechnical and Geoenvironmental Applications. Crystals, 11, Article No. 370.
https://doi.org/10.3390/cryst11040370
[15]  Cui, M.J., Lai, H.J., Hoang, T., et al. (2021) One-Phase-Low-PH Enzyme Induced Carbonate Precipitation (EICP) Method for Soil Improvement. Acta Geotechnica, 16, 481-489.
https://doi.org/10.1007/s11440-020-01043-2
[16]  张建伟, 韩一, 边汉亮, 等. 大豆脲酶诱导碳酸钙固化粉土抗风侵蚀性能的试验研究[J]. 工业建筑, 2020, 50(12): 19-24 118.
[17]  范广才, 缪林昌, 孙潇昊, 等. 脲酶抑制剂对EICP防风固沙效果的影响研究[J]. 防灾减灾工程学报, 2022, 42(5): 1019-1027.
[18]  喻文晔. 海水环境下不同酶源加固钙质砂试验研究[D]: [硕士学位论文]. 三亚: 海南热带海洋学院, 2022.
[19]  崔猛, 符晓, 郑俊杰, 等. 黄豆脲酶诱导碳酸钙沉淀多变量试验研究[J]. 岩土力学, 2022(11): 1-9.
[20]  曹光辉, 刘士雨, 蔡燕燕, 等. 靶向激活产脲酶微生物联合酶诱导碳酸盐沉淀加固陆域吹填海砂试验研究[J]. 岩土力学, 2022, 43(8): 2241-2252.
[21]  赵丽娜, 曹扬. 海螺状碳酸钙的可控合成与荧光性能[J]. 高等学校化学学报, 2017, 38(12): 2144-2148.
[22]  边汉亮, 张旭钢, 韩一, 等. 大豆脲酶对Zn2 污染土的修复试验研究[J]. 工业建筑, 2022, 52(11): 67-70 66.
[23]  李笑磊. 土遗址城墙EICP加固技术研究[D]: [硕士学位论文]. 郑州: 河南大学, 2022.
[24]  郑伟. 玄武岩纤维-EICP改良粉砂剪切特性研究[D]: [硕士学位论文]. 郑州: 河南大学, 2022.
[25]  Chandra, A. and Ravi, K. (2021) Application of Enzyme-Induced Carbonate Precipitation (EICP) to Improve the Shear Strength of Different Type of Soils. In: Gali, M.L. and Rao, P.R., Eds., Problematic Soils and Geoenvironmental Concerns, Springer, Berlin, 617-632.
https://doi.org/10.1007/978-981-15-6237-2_52
[26]  Pratama, G.B.S., Yasuhara, H., Kinoshita, N., et al. (2021) Application of Soybean Powder as Urease Enzyme Replacement on EICP Method for Soil Improvement Technique. Earth and Environmental Science, 622, Article ID: 012035.
https://doi.org/10.1088/1755-1315/622/1/012035
[27]  Meng, H., Shu, S., Gao, Y., et al. (2021) Multiple-Phase Enzyme-Induced Carbonate Precipitation (EICP) Method for Soil Improvement. Engineering Geology, 294, Article ID: 106374.
https://doi.org/10.1016/j.enggeo.2021.106374
[28]  Ossai, R., Rivera, L. and Bandini, P. (2020) Experimental Study to Determine an EICP Application Method Feasible for Field Treatment for Soil Erosion Control. Geo-Congress 2020, Minneapolis, 25-28 February 2020, 205-213.
https://doi.org/10.1061/9780784482834.023
[29]  Dilrukshi, R.A.N., Nakashima, K. and Kawasaki, S. (2018) Soil Improvement Using Plant-Derived Urease-Induced Calcium Carbonate Precipitation. Soils and Foundations, 58, 894-910.
https://doi.org/10.1016/j.sandf.2018.04.003
[30]  Zhao, Z., Hamdan, N., Shen, L., et al. (2016) Biomimetic Hydrogel Composites for Soil Stabilization and Contaminant Mitigation. Environmental Science & Technology, 50, 12401-12410.
https://doi.org/10.1021/acs.est.6b01285
[31]  Arab, M.G., Refaei, M., Alotaibi, E., et al. (2024) Optimizing the Compressive Strength of Sodium Alginate-Modified EICP-Treated Sand Using Design of Experiments. Journal of Materials in Civil Engineering, 36, Article ID: 04024017.
https://doi.org/10.1061/JMCEE7.MTENG-16400
[32]  Jain, S., Alothman, S., Kavazanjian Jr., E., et al. (2024) Effect of EICP Treatment on the Unconfined Compressive Strength and Soil Water Characteristic Curve of a Clayey Sand Material. Geo-Congress, Vancouver, 25-28 February 2024, 338-344.
https://doi.org/10.1061/9780784485354.033
[33]  柴少波, 李显鹏, 李轶楠, 等. 橡胶颗粒及EICP技术改良黄土动力特性试验[J/OL]. 工程科学与技术, 2024: 1-14.
https://doi.org/10.15961/j.jsuese.202300961
[34]  王琳, 郑文杰, 薛中飞, 等. 生物反应墙联合电动修复铜污染黄土试验研究[J/OL]. 土木工程学报, 2024: 1-9.
https://doi.org/10.15951/j.tmgcxb.23110939
[35]  Yuan, H., Ren, G., Liu, K., et al. (2020) Experimental Study of EICP Combined with Organic Materials for Silt Improvement in the Yellow River Flood Area. Applied Sciences, 10, Article No. 7678.
https://doi.org/10.3390/app10217678
[36]  Hamdan, N. and Kavazanjian Jr., E. (2016) Enzyme-Induced Carbonate Mineral Precipitation for Fugitive Dust Control. Géotechnique, 66, 546-555.
https://doi.org/10.1680/jgeot.15.P.168
[37]  张建伟, 钱思羽, 王小锯, 等. EICP与木质素联合改性粉土边坡抗雨蚀试验研究[J]. 河海大学学报(自然科学版), 2024, 52(1): 70-76.
[38]  原鹏博, 朱磊, 钟秀梅, 等. 酶诱导碳酸钙沉淀加固遗址土动力特性试验研究[J]. 岩土力学, 2022, 43(12): 3385-3392 3415.
[39]  Pasillas, J.N., Khodadadi, H., Martin, K., et al. (2018) Viscosity-Enhanced EICP Treatment of Soil. IFCEE 2018, Orlando, 5-10 March 2018, 145-154.
https://doi.org/10.1061/9780784481592.015
[40]  Beser, D., West, C., Cunningham, A., et al. (2017) Assessment of Ureolysis Induced Mineral Precipitation Material Properties Compared to Oil and Gas Well Cements. ARMA US Rock Mechanics/Geomechanics Symposium, ARMA, San Francisco, 25-28 June 2017, ARMA-2017-0588.
[41]  Oliveira, P.J.V., Freitas, L.D. and Carmona, J.P.S.F. (2017) Effect of Soil Type on the Enzymatic Calcium Carbonate Precipitation Process Used for Soil Improvement. Journal of Materials in Civil Engineering, 29, Article ID: 04016263.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001804
[42]  Simatupang, M., Sukri, A.S., et al. (2019) Effect of Confining Pressures on the Shear Modulus of Sand Treated with Enzymatically Induced Calcite Precipitation. IOP Conference Series: Materials Science and Engineering, 615, Article ID: 012042.
https://doi.org/10.1088/1757-899X/615/1/012042
[43]  曹光辉, 刘士雨, 蔡燕燕, 等. 靶向激活产脲酶微生物联合EICP加固陆域吹填海砂试验研究[J]. 岩土力学, 2022(8): 1-13.
[44]  田威, 李腾, 贾能, 等. 木钙源EICP溶液固化路基黄土性能研究[J]. 材料导报, 2022, 36(15): 78-85.
[45]  Moghal, A.A.B., Lateef, M.A., Abu Sayeed Mohammed, S., et al. (2020) Heavy Metal Immobilization Studies and Enhancement in Geotechnical Properties of Cohesive Soils by EICP Technique. Applied Sciences, 10, Article No. 7568.
https://doi.org/10.3390/app10217568
[46]  Yuan, H., Liu, K., Zhang, C., et al. (2022) Mechanical Properties of Na-Montmorillonite-Modified EICP-Treated Silty Sand. Environmental Science and Pollution Research, 29, 10332-10344.
https://doi.org/10.1007/s11356-021-16442-5
[47]  Ahenkorah, I., Rahman, M.M., Karim, M.R., et al. (2023) Unconfined Compressive Strength of MICP and EICP Treated Sands Subjected to Cycles of Wetting-Drying, Freezing-Thawing and Elevated Temperature: Experimental and EPR Modelling. Journal of Rock Mechanics and Geotechnical Engineering, 15, 1226-1247.
https://doi.org/10.1016/j.jrmge.2022.08.007
[48]  Sun, Y., Zhong, X., Lv, J., et al. (2023) Experimental Study on Different Improvement Schemes of EICP-Lignin Solidified Silt. Materials, 16, Article No. 999.
https://doi.org/10.3390/ma16030999
[49]  Kavazanjian Jr., E., Almajed, A. and Hamdan, N. (2017) Bio-Inspired Soil Improvement Using EICP Soil Columns and Soil Nails. Grouting 2017, Honolulu, 9-12 July 2017, 13-22.
https://doi.org/10.1061/9780784480793.002
[50]  Almajed, A., Khodadadi, H. and Kavazanjian, E. (2018) Sisal Fiber Reinforcement of EICP-Treated Soil. IFCEE 2018, Orlando, 5-10 March 2018, 29-36.
https://doi.org/10.1061/9780784481592.004
[51]  He, J., Mao, X., Zhou, Y., et al. (2022) Cementation of Sand with Enzyme-Induced Carbonate Precipitation (EICP) Using Concrete-Extracted Calcium. Frontiers in Physics, 9, Article No. 808.
https://doi.org/10.3389/fphy.2021.825356
[52]  Miao, L., Wu, L., Sun, X., et al. (2020) Method for Solidifying Desert Sands with Enzyme-Catalysed Mineralization. Land Degradation & Development, 31, 1317-1324.
https://doi.org/10.1002/ldr.3499
[53]  Putra, H., Yasuhara, H. and Kinoshita, N. (2017) Optimum Condition for the Application of Enzyme-Mediated Calcite Precipitation Technique as Soil Improvement Technique. International Journal on Advanced Science, Engineering and Information Technology, 7, 2145.
https://doi.org/10.18517/ijaseit.7.6.3425
[54]  Chandra, A. and Ravi, K. (2020) Effect of Magnesium Incorporation in Enzyme-Induced Carbonate Precipitation (EICP) to Improve Shear Strength of Soil. Advances in Computer Methods and Geomechanics, IACMAG Symposium 2019, Volume 2, 333-346.
https://doi.org/10.1007/978-981-15-0890-5_28
[55]  Zomorodian, S.M.A., Nikbakht, S., Ghaffari, H., et al. (2023) Enzymatic-Induced Calcite Precipitation (EICP) Method for Improving Hydraulic Erosion Resistance of Surface Sand Layer: A Laboratory Investigation. Sustainability, 15, Article No. 5567.
https://doi.org/10.3390/su15065567
[56]  Refaei, M., Arab, M.G. and Omar, M. (2020) Sandy Soil Improvement through Biopolymer Assisted EICP. Geo-Congress 2020, Minneapolis, 25-28 February 2020, 612-619.
https://doi.org/10.1061/9780784482780.060
[57]  Shu, S., Yan, B., Ge, B., et al. (2022) Factors Affecting Soybean Crude Urease Extraction and Biocementation via Enzyme-Induced Carbonate Precipitation (EICP) for Soil Improvement. Energies, 15, Article No. 5566.
https://doi.org/10.3390/en15155566
[58]  Almajed, A., Tirkolaei, H.K., Kavazanjian, E., et al. (2022) Enzyme Induced Biocementated Sand with High Strength at Low Carbonate Content. Scientific Reports, 9, Article No. 1135.
https://doi.org/10.1038/s41598-018-38361-1
[59]  Park, S.S., Choi, S.G. and Nam, I.H. (2014) Effect of Plant-Induced Calcite Precipitation on the Strength of Sand. Journal of Materials in Civil Engineering, 26, Article ID: 06014017.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001029
[60]  Ahenkorah, I., Rahman, M.M., Karim, M.R., et al. (2022) Evaluation of the Treatment Processes for MICP-and EICP-Treated Sands. Geo-Congress 2022, Charlotte, 20-23 March 2022, 365-374.
https://doi.org/10.1061/9780784484012.038

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413