全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

氨基酸转运体SLC1家族作为肿瘤治疗靶点的研究进展
Research Progress of Amino Acid Transporter SLC1 Family as Tumor Therapeutic Targets

DOI: 10.12677/hjbm.2024.142017, PP. 157-165

Keywords: 溶质载体家族1,肿瘤细胞,氨基酸转运体,靶向治疗
SLC1
, Tumor Cell, Amino Acid Transporter, Targeted Therapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:整理综述氨基酸转运体SLC1家族的生理特性以及目前作为肿瘤治疗靶点方面的研究进展。方法:通过查找中国知网、PubMed等文献数据库,整理国内外有关SLC1家族生理特性以及影响肿瘤代谢的研究报告,整理出SLC1家族在靶向治疗肿瘤领域的相关研究进展。结果:SLC1家族成员在肿瘤代谢过程中可通过促进细胞内外谷氨酸合成谷胱甘肽、通过谷氨酰胺摄取和mTOR信号传导实现谷氨酰胺的过度表达、通过调节R-2-羟基戊二酸癌代谢物(R-2-HG)、HIF-1α以及p13K/AKT通路等促进肿瘤细胞的发展,除此之外,很多研究中也发现SLC1家族成员与肿瘤细胞的自噬和凋亡、氧化应激反应、细胞有丝分裂以及癌基因的表达等多种因素相关,靶向SLC1家族的抗肿瘤药物已成为目前肿瘤药物研究的热点。结论:本文通过大量文献综述,系统地整理总结四种SLC1家族成员与不同肿瘤细胞之间的影响机制研究进展,但目前多种氨基酸转运体在肿瘤细胞中的作用机制仍不够明确,在今后的研究中进一步探究SLC1家族成员抗肿瘤治疗的作用机制。
Objective: Summarize the physiological characteristics of the amino acid transporter SLC1 family and the current research progress as a target for tumor treatment. Methods: By searching literature databases such as China National Knowledge Infrastructure (CNKI) and PubMed, we have compiled research reports on the physiological characteristics of the SLC1 family and its impact on tumor metabolism both domestically and internationally, and summarized the relevant research progress of the SLC1 family in targeted therapy of tumors. Results: SLC1 family members can promote intracellular and extracellular glutamic acid synthesis of glutathione during tumor metabolism, achieve overexpression of glutamine through glutamine uptake and mTOR signaling, regulate R-2-hydroxyglutarate cancer metabolites (R-2-HG), HIF-1α, and the p13K/AKT pathway promotes the development of tumor cells. In addition, many studies have also found that members of the SLC1 family are associated with various factors such as autophagy and apoptosis, oxidative stress response, cell mitosis, and oncogene expression in tumor cells. Targeting SLC1 family anti-tumor drugs has become a hot topic in current cancer drug research. Conclusion: This article systematically summarizes the research progress on the impact mechanism between four SLC1 family members and different tumor cells through a large number of literature reviews. However, the mechanism of action of various amino acid transporters in tumor cells is still not clear. In future research, the mechanism of action of SLC1 family members in anti-tumor therapy will be further explored.

References

[1]  Kroemer, G. and Pouyssegur, J. (2008) Tumor Cell Metabolism: Cancer’s Achilles’ Heel. Cancer Cell, 13, 472-482.
https://doi.org/10.1016/j.ccr.2008.05.005
[2]  Li., Z. and Zhang, H. (2016) Reprogramming of Glucose, Fatty Acid and Amino Acid Metabolism for Cancer Progression. Cellular and Molecular Life Sciences, 73, 377-392.
https://doi.org/10.1007/s00018-015-2070-4
[3]  段泽琳. 靶向SLC1A5介导的谷氨酰胺摄取作为肿瘤抗增殖新途径[D]: [硕士学位论文]. 苏州: 苏州大学, 2021.
[4]  Luengo, A., Cui, D.Y. and Vander Heidfn, M.G. (2017) Targeling Me-Metabolism for Cancer Therapy. Cell Chemical Biology, 24, 1161-1180.
https://doi.org/10.1016/j.chembiol.2017.08.028
[5]  Brandon, F., Ashley, S. and Deberardinis, R.J. (2020) Metabolic Reprogramming and Cancer Progression. Science, 368, eaaw54.
https://doi.org/10.1126/science.aaw5473
[6]  张峥, 秦立强. 氨基酸及其转运体对肿瘤细胞和T细胞作用的研究进展[J]. 肿瘤代谢与营养电子杂志, 2022, 9(3): 271-275.
[7]  王林琳, 孙振亮. 氨基酸转运体在肿瘤代谢中的研究进展[J]. 生物技术进展, 2022, 12(1): 50-56.
[8]  Yahyaoui, R. and Pérez-Frías, J. (2019) Amino Acid Transport Defects in Human Inherited Metabolic Disorders. International Journal of Molecular Sciences, 21, Article 119.
https://doi.org/10.3390/ijms21010119
[9]  Bai, X., Moraes, T.F. and Reithmeier, R.A.F. (2017) Structural Biology of Solute Carrier (SLC) Membrane Transport Proteins. Molecular Membrane Biology, 34, 1-32.
https://doi.org/10.1080/09687688.2018.1448123
[10]  陆心月, 郑旭, 王志钢, 吴晓彤. 哺乳动物细胞氨基酸转运体及胞内感受机制研究进展[J]. 生命科学, 2022, 34(9): 1155-1167.
[11]  Xiong, J. and Zhao, W.L. (2023) A Novel SLC1A1-RIC1 Fusion Sensitive to Asparaginase-Based Therapy in Natural Killer/T-Cell Lymphoma. British Journal of Haematology, 203, 485-489.
https://doi.org/10.1111/bjh.19066
[12]  Wang, X., Chen, Z., Xu, J., et al. (2022) SLC1A1-Mediated Cellular and Mitochondrial Influx of R-2-Hydroxyglutarate in Vascular Endothelial Cells Promotes Tumor Angiogenesis in IDH1-Mutant Solid Tumors. Cell Research, 32, 638-658.
https://doi.org/10.1038/s41422-022-00650-w
[13]  Yang, Z., Su, W., Wei, X., Qu, S., Zhao, D., Zhou, J., Wang, Y., Guan, Q., Qin, C., Xiang, J., Zen, K. and Yao, B. (2023) HIF-1α Drives Resistance to Ferroptosis in Solid Tumors by Promoting Lactate Production and Activating SLC1A1. Cell Reports, 42, Article ID: 112945.
https://doi.org/10.1016/j.celrep.2023.112945
[14]  Guo, W., Li, K., Sun, B., Xu, D., Tong, L., Yin, H., Liao, Y., Song, H., Wang, T., Jing, B., et al. (2021) Dysregulated Glutamate Transporter SLC1A1 Propels Cystine Uptake Via Xc for Glutathione Synthesis in Lung Cancer. Cancer Research, 81, 552-566.
https://doi.org/10.1158/0008-5472.CAN-20-0617
[15]  Lewerenz, J., Hewett,?S.J., Huang, Y., Lambros,?M., Gout,?P.W., Kalivas,?P.W., et al. (2013) The Cystine/Glutamate Antiporter System XC in Health and Disease: From Molecular Mechanisms to Novel Therapeutic Opportunities. Antioxidants & Redox Signaling, 18, 522-555.
https://doi.org/10.1089/ars.2011.4391
[16]  Lo, M., Wang, Y.Z. and Gout, P.W.?(2008) The XC Cystine/Glutamate Antiporter: A Potential Target for Therapy of Cancer and Other Diseases. Journal of Cellular Physiology, 215, 593-602.
https://doi.org/10.1002/jcp.21366
[17]  Bailey, C.G., Ryan, R.M., Thoeng, A.D., Ng, C., King, K. and Vanslambrouck, J.M. (2011) Loss-of-Function Mutations in the Glutamate Transporter SLC1A1 Cause Human Dicarboxylic Aminoaciduria. Journal of Clinical Investigation, 121, 446-453.
https://doi.org/10.1172/JCI44474
[18]  Pavlova, N.N., Hui, S., Ghergurovich, J.M., et al. (2018) As Extracellular Glutamine Levels Decline, Asparagine Becomes an Essential Amino Acid. Cell Metabolism, 27, 428-438.
https://doi.org/10.1016/j.cmet.2017.12.006
[19]  Xiong, J., Wang, N., Zhong, H., et al. (2021) SLC1A1 Mediated Glutamine Addiction and Contributed to Natural Killer T-Cell Lymphoma Progression with Immunotherapeutic Potential. eBioMedicine, 72, Article ID: 103614.
https://doi.org/10.1016/j.ebiom.2021.103614
[20]  Dang, L., et al. (2009) Cancer-Associated IDH1 Mutations Produce 2-Hydroxyglutarate. Nature, 462, 739-744.
https://doi.org/10.1038/nature08617
[21]  Castaldo, P., et al. (2009) Role of The Mitochondrial Sodium/Calcium Exchanger in Neuronal Physiology and in the Pathogenesis of Neurological Diseases. Progress in Neurobiology, 87, 58-79.
https://doi.org/10.1016/j.pneurobio.2008.09.017
[22]  Yuan, S., Wei, C., Liu, G., Zhang, L., Li, J., Li, L., Cai, S. and Fang, L. (2022) Sorafenib Attenuates Liver Fibrosis by Triggering Hepatic Stellate Cell Ferroptosis via HIF-1α/SLC7A11 Pathway. Cell Proliferation, 55, e13158.
https://doi.org/10.1111/cpr.13158
[23]  Zhao, Y., Li, M., Yao, X., Fei, Y., Lin, Z., Li, Z., Cai, K., Zhao, Y. and Luo, Z. (2020) HCAR1/MCT1 Regulates Tumor Ferroptosis through the Lactate-Mediated AMPK-SCD1 Activity and Its Therapeutic Implications. Cell Reports, 33, Article ID: 108487.
https://doi.org/10.1016/j.celrep.2020.108487
[24]  Hagiwara, T., Tanaka, K., Takai, S., Maeno-Hikichi, Y., Mukainaka, Y. and Wada, K., (1996) Genomic Organization, Promoter Analysis, and Chromosomal Localization of the Gene for the Mouse Glial High-Affinity Glutamate Transporter Slc1a3. Genomics, 33, 508-515.
https://doi.org/10.1006/geno.1996.0226
[25]  Mamoor, S. (2020) SLC1A3 (EAAT1) Is Over-Expressed in Brain Metastatic Breast Cancer.
https://doi.org/10.31219/osf.io/6qnfe
[26]  Ganapathy, V., Thangaraju, M. and Prasad, P.D. (2009) Nutrient Transporters in Cancer: Relevance to Warburg Hypothesis and beyond. Pharmacology & Therapeutics, 121, 29-40.
https://doi.org/10.1016/j.pharmthera.2008.09.005
[27]  Rathmell, J.C., Fox, C.J., Plas, D.R., et al. (2003) Akt-Directed Glucose Metab-Olism Can Prevent Bax Conformation Change and Promote Growth Factor-Independent Survival. Molecular and Cellular Biology, 23, 7315-7328.
https://doi.org/10.1128/MCB.23.20.7315-7328.2003
[28]  Zhou, Q.L., Jiang, Z.Y., Holik, J., et al. (2008) Akt Substrate TBC1D1 Regulates GLUT1 Expression through the MTOR Pathway in 3T3-L1 Adipo-Cytes. Biochemical Journal, 411, 647-655.
https://doi.org/10.1042/BJ20071084
[29]  Lien, E.C., Lyssiotis, C.A. and Cantley, L.C. (2016) Metabolic Reprogramming by the PI3K-Akt-MTOR Pathway in Cancer. In: Cramer, T.A. and Schmitt, C., Eds., Metabolism in Cancer, Springer, Cham, 39-72.
https://doi.org/10.1007/978-3-319-42118-6_3
[30]  Tajan, M., Hock, A.K., Blagih, J., et al. (2018) A Role for P53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3. Cell Metabolism, 28, 721-736.E6.
https://doi.org/10.1016/j.cmet.2018.07.005
[31]  Cong, W., Wang, Z.L., Liu, W. and Ai, Z.L. (2019) CD133 Promotes the Self-Renewal Capacity of Thyroid Cancer Stem Cells through Activation of Glutamate Aspartate Transporter SLC1A3 Expression. Biochemical and Biophysical Research Communications, 511, 87-91.
https://doi.org/10.1016/j.bbrc.2019.02.023
[32]  Tong, H., Yu, X., Lu, X. and Wang, P. (2015) Downregulation of Solute Carriers of Glutamate in Gliosomes and Synaptosomes May Explain Local Brain Metastasis in Anaplastic Glioblastoma. IUBMB Life, 67, 306-311.
https://doi.org/10.1002/iub.1372
[33]  Walczak, K., Deneka-Hannemann, S., Jarosz, B., Zgrajka, W., Stoma, F., et al. (2014) Kynurenic Acid Inhibits Proliferation and Migration of Human Glioblas-Toma T98G Cells. Pharmacological Reports, 66, 130-136.
https://doi.org/10.1016/j.pharep.2013.06.007
[34]  Ye, Z.C., Rothstein, J.D. and Sontheimer, H. (1999) Compromised Glutamatetransport in Human Glioma Cells: Reduction-Mislocalization of Sodium-Dependent Glutamate Transporter S and Enhanced Activity of Cystine-Glutamate Exchange. Journal of Neuroscience, 19, 10767-10777.
https://doi.org/10.1523/JNEUROSCI.19-24-10767.1999
[35]  Lyons, S.A., Chung, W.J., Weaver, A.K., Ogunrinu, T., and Sontheimer, H. (2007) Autocrine Glutamate Signaling Promotes Glioma Cell Invasion. Cancer Research, 67, 9463-9471.
https://doi.org/10.1158/0008-5472.CAN-07-2034
[36]  VanLith, S.A., Navis, A.C., Verrijp, K., Niclou, S.P., Bjerkvig, R., et al. (2014) Glutamate as Chemotactic Fuel for Diffuse Glioma Cells: Are They Glutamate Suckers? Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1846, 66-74.
https://doi.org/10.1016/j.bbcan.2014.04.004
[37]  Hofmann, K., Maria, D., Fink, T., et al. (1994) Human Neutral Amino Acid Transporter ASCT1: Structure of the Gene (SLC1A4) and Localization to Chromosome 2p13-P15. Genomics, 24, 20-26.
https://doi.org/10.1006/geno.1994.1577
[38]  Sedláková, L., Lauthová, P., Těrbová, K., et al. (2021) Severe Neurodevelopmental Disorder with Intractable Seizures Due to a Novel SLC1A4 Homozygous Variant. European Journal of Medical Genetics, 64, Article ID: 104263.
https://doi.org/10.1016/j.ejmg.2021.104263
[39]  Liu, Y., Xiong, H., Yan, C., Wang, Y., Cao, W. and Qie, S. (2023) Bioinformatic Analysis of the Prognostic Value of a Panel of Six Amino Acid Transporters in Human Cancers. Cell Journal, 25, 613-624.
[40]  Palumbo, P., Petracca, A., Maggi, R., et al. (2019) A Novel Dominant-Negative FGFR1 Variant Causes Hartsfield Syndrome by Deregulating RAS/ERK1/2 Pathway. European Journal of Human Genetics, 27, 1113-1120.
https://doi.org/10.1038/s41431-019-0350-4
[41]  Wolosker, H. and Radzishevsky, I. (2013) The Serine Shuttle between Glia and Neurons: Implications for Neurotransmission and Neurodegeneration. Biochemical Society Transactions, 41, 1546-1550.
https://doi.org/10.1042/BST20130220
[42]  Eitan, K., Salman, Z., Inna, R., et al. (2018) ASCT1 (Slc1a4) Transporter Is a Physiologic Regulator of Brain D-Serine and Neurodevelopment. Proceedings of the National Academy of Sciences of the United States of America, 115, 9628-9633.
https://doi.org/10.1073/pnas.1722677115
[43]  Wang, X.C., He, Q.F., Shen, H.Y., Xia, A.L., Tian, W.F., Yu, W.W. and Sun, B.C. (2019) TOX Promotes the Exhaustion of Antitumor CD8 T Cells by Preventing PD1 Degradation in Hepatocellular Carcinoma. Journal of Hepatology, 71, 731-741.
https://doi.org/10.1016/j.jhep.2019.05.015
[44]  Peng, X., Chen, R., Cai, S., et al. (2021) SLC1A4: A Powerful Prognostic Marker and Promising Therapeutic Target for HCC. Frontiers in Oncology, 11, Article 650355.
https://doi.org/10.3389/fonc.2021.650355
[45]  Parker, S.J., Amendola, C.R., Hollinshead, K.E.R., et al. (2020) Selective Alanine Transporter Utilization Creates a Targetable Metabolic Niche in Pancreatic Cancer. Cancer Discovery, 10, 1018-1037.
https://doi.org/10.1158/2159-8290.CD-19-0959
[46]  Wong, C.H., Li, C.H., He, Q., et al. (2019) Ectopic HOTTIP Expression Induces Non-Canonical Transactivation Pathways to Promote Growth and Invasiveness in Pancreatic Ductal Aden Ocarcinoma. Cold Spring Harbor Laboratory.
https://doi.org/10.1101/812800
[47]  Bi, X. and Henry, C.J. (2017) Plasma-Free Amino Acid Profiles Are Predictors of Cancer and Diabetes Development. Nutrition & Diabetes, 7, e249.
https://doi.org/10.1038/nutd.2016.55
[48]  陆健, 龚镭, 王小云, 等. 氨基酸转运载体SLC1A5在胃癌组织中的表达及其临床病理学意义[J]. 现代生物医学进展, 2019, 19(20): 3880-3885.
https://doi.org/10.13241/j.cnki.pmb.2019.20.018
[49]  Jiang, H., Zhang, N., Tang, T., et al. (2020) Target the Human Alanine/Serine/Cysteine Transporter 2(ASCT2): Achievement and Future for Novel Cancer Therapy. Pharmacological Research, 158, Article ID: 104844.
https://doi.org/10.1016/j.phrs.2020.104844
[50]  Bott, A.J., Shen, J., Tonelli, C., et al. (2019) Glutamine Anabolism Plays a Critical Role in Pancreatic Cancer by Coupling Carbon and Nitrogen Metabolism. Cell Reports, 29, 1287-1298.E6.
https://doi.org/10.1016/j.celrep.2019.09.056
[51]  Li, L., Meng, Y., Li, Z., et al. (2019) Discovery and Development of Small Molecule Modulators Targeting Glutamine Metabolism. European Journal of Medicinal Chemistry, 163, 215-242.
https://doi.org/10.1016/j.ejmech.2018.11.066
[52]  Zou, Z., Tao, T., Li, H., et al. (2020) MTOR Signaling Pathway and MTOR Inhibitors in Cancer: Progress and Challenges. Cell and Bioscience, 10, Article No. 31.
https://doi.org/10.1186/s13578-020-00396-1
[53]  Sanein, J.Q., Hoeksema, M.D., et al. (2015) Targeting SLC1a5-Mediated Glutamine Dependence in Non-Small Cell Lung Cancer. International Journal of Cancer, 137, 1587-1597.
[54]  Avissar, N.E., Sax, H.C. and Toia, L. (2008) In Human Entrocytes, GLN Transport and ASCT2 Surface Expression Induced by Short-Term EGF Are MAPK, PI3K, and Rho-Dependent. Digestive Diseases and Sciences, 53, 2113-2125.
https://doi.org/10.1007/s10620-007-0120-y

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413