全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多元曲率分辨算法的混合塑料光谱识别研究
Spectroscopic Classification of Mixed Plastics Based on Multiple Curvature Resolution

DOI: 10.12677/aep.2024.142039, PP. 293-299

Keywords: 中红外光谱,混合塑料,自动分类,多元曲率分辨算法
Mid-Infrared Spectroscopy
, Mixed Plastics, Automatic Classification, Multivariate Curvature Resolution Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

塑料污染在世界范围内普遍存在。污染物被生物体摄入后通过食物链对人体健康造成损害。对塑料的检测和识别对生态风险评估具有重要意义。自然环境下的混合塑料的分类回收存在极大的不便,为了能使这些混合塑料被更精准更快速地识别回收,本文使用傅里叶红外光谱数据的多元曲率分辨算法分析来混合塑料的识别和可视化,该算法原理简单,适用性强。对四种常见的塑料类型聚乙烯(PE)、聚苯乙烯(PS),聚丙烯(PP)和聚对苯二甲酸乙二醇酯(PET)以二元混合物的形式进行了成分的识别。基于MCR的傅里叶红外光谱技术还成功地应用于混合塑料成分分析。结果表明,该方法对于混合塑料识别的精确度都在0.95以上,并且识别速度快,无需进行样品的特殊预处理。
Plastic pollution is a widespread and increasingly significant source of contamination globally. When ingested by organisms, these pollutants can cause harm to human health through the food chain. Therefore, the detection and identification of plastics are crucial for ecological risk assessment. Classifying and recycling mixed plastics in natural environments present significant challenges. To address these issues and enable more precise and rapid identification and recycling of mixed plastics, this study employs a multiple curvature resolution (MCR) algorithm based on Fourier transform infrared (FTIR) spectroscopy data. This algorithm is straightforward in principle and highly adaptable. In this study, we focused on four common types of plastics: polyethylene (PE), polystyrene (PS), polypropylene (PP), and polyethylene terephthalate (PET). We conducted component identification on binary mixtures of these plastics. The MCR-based FTIR spectroscopy technique was successfully applied to mixed plastic component analysis. The results demonstrate that this method achieves an accuracy of over 0.95 in identifying mixed plastics, with rapid recognition speeds and no need for special sample pretreatment.

References

[1]  Jambeck, J.R., Geyer, R., Wilcox, C., et al. (2015) Plastic Waste Inputs from Land into the Ocean. Science, 347, 768-771.
https://doi.org/10.1126/science.1260352
[2]  Battisti, C., Kroha, S., Kozhuharova, E., et al. (2019) Fishing Lines and Fish Hooks as Neglected Marine Litter: First Data on Chemical Composition, Densities, and Biological Entrapment from a Mediterranean Beach. Environmental Science and Pollution Research, 26, 1000-1007.
https://doi.org/10.1007/s11356-018-3753-9
[3]  骆永明, 周倩, 章海波. 重视土壤中微塑料污染研究, 防范生态与食物链风险[J]. 中国科学院院刊, 2018, 33(10): 25-34.
[4]  Elert, A.M., Becker, R., Duemichen, E., et al. (2017) Comparison of Different Methods for MP Detection: What Can We Learn from Them, and Why Asking the Right Question before Measurements Matters? Environmental Pollution, 231, 1256-1264.
https://doi.org/10.1016/j.envpol.2017.08.074
[5]  da Silva, D.J., Parra, D.F. and Wiebeck, H. (2021) Applying Confocal Raman Spectroscopy and Different Linear Multivariate Analyses to Sort Polyethylene Residues. Chemical Engineering Journal, 426, Article ID: 131344.
https://doi.org/10.1016/j.cej.2021.131344
[6]  Chen X, Xu M, Yuan L, et al. (2021) Degradation Degree Analysis of Environmental Microplastics by Micro FT-IR Imaging Technology. Chemosphere, 274, Article ID: 129779.
https://doi.org/10.1016/j.chemosphere.2021.129779
[7]  Akdogan, Z. and Guven, B. (2019) Microplastics in the environment: A Critical Review of Current Understanding and Identification of Future Research Needs. Environmental Pollution, 254, Article ID: 113011.
https://doi.org/10.1016/j.envpol.2019.113011
[8]  Bonifacio, A., Beleites, C., Vittur, F., et al. (2010) Chemical Imaging of Articular Cartilage Sections with Raman Mapping, Employing Uni-and Multi-Variate Methods for Data Analysis. Analyst, 135, 3193-3204.
https://doi.org/10.1039/c0an00459f
[9]  Browne, M.A. (2015) Sources and Pathways of Microplastics to Habitats. In: Bergmann, M., Gutow, L. and Klages, M. Eds., Marine Anthropogenic Litter, Springer, Cham, 229-244.
https://doi.org/10.1007/978-3-319-16510-3_9
[10]  Bergmann, M., Gutow, L. and Klages M. (2015) Marine Anthropogenic Litter. Springer Nature, Berlin.
https://doi.org/10.1007/978-3-319-16510-3
[11]  de Carvalho, A.R., Mathieu, O., Thevenot, M., et al. (2023) Determination of Polystyrene Microplastic in Soil by Pyrolysis-Gas Chromatography-Mass Spectrometry (pyr-GC-MS). Analytical Letters, 1-19.
https://doi.org/10.1080/00032719.2023.2262633
[12]  Collard, F., Gilbert, B., Compère, P., et al. (2017) Microplastics in Livers of European Anchovies (Engraulis encrasicolus, L.). Environmental Pollution, 229, 1000-1005.
https://doi.org/10.1016/j.envpol.2017.07.089
[13]  Corti, A., Muniyasamy, S., Vitali, M., et al. (2010) Oxidation and Biodegradation of Polyethylene Films Containing Pro-Oxidant Additives: Synergistic Effects of Sunlight Exposure, Thermal Aging and Fungal Biodegradation. Polymer Degradation and Stability, 95, 1106-1114.
https://doi.org/10.1016/j.polymdegradstab.2010.02.018
[14]  Cózar, A., Echevarría, F., González-Gordillo, J.I., et al. (2014) Plastic Debris in the Open Ocean. Proceedings of the National Academy of Sciences, 111, 10239-10244.
https://doi.org/10.1073/pnas.1314705111
[15]  De-la-Torre, G.E. (2020) Microplastics: An Emerging Threat to Food Security and Human Health. Journal of Food Science and Technology, 57, 1601-1608.
https://doi.org/10.1007/s13197-019-04138-1
[16]  Dong, M., Zhang, Q., Xing, X., et al. (2020) Raman Spectra and Surface Changes of Microplastics Weathered under Natural Environments. Science of The Total Environment, 739, Article ID: 139990.
https://doi.org/10.1016/j.scitotenv.2020.139990
[17]  Coralli, I., Giorgi, V., Vassura, I., et al. (2022) Secondary Reactions in the Analysis of Microplastics by Analytical Pyrolysis. Journal of Analytical and Applied Pyrolysis, 161, Article ID: 105377.
https://doi.org/10.1016/j.jaap.2021.105377

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133