全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dark Matter Particles May Never Be Directly Detected by Instruments—A Dark Matter Mechanism That Does Not Exceed the Standard Model Framework

DOI: 10.4236/jmp.2024.155028, PP. 596-612

Keywords: Dark Matter, Virtual Particle, Gravitational Field, Ordinary Matter

Full-Text   Cite this paper   Add to My Lib

Abstract:

A dark matter mechanism within the framework of the standard model (SM) of particle physics is proposed in this article that the essence of dark matter may be the excited virtual particle field by the gravitational field of ordinary matter, which contains virtual photons, virtual positive and negative electron pairs, virtual gluons, virtual positive and negative quark pairs, virtual neutrinos etc. In this mechanism, there are two basic assumptions: 1) the stronger the gravitational field of ordinary matter, the greater the excited energy (mass) density of virtual particle field; 2) The excited virtual particle field is generally very weak in self-interaction. The virtual particle field excited by gravity can exhibit the properties of dark matter and may become a dark matter candidate. Based on this new dark matter mechanism, the hydrodynamic equations and cosmic perturbation equations describing cosmic matter are improved, and this may be meaningful for solving the challenges faced by the standard cosmological model (Lambda-CDM or LCDM) and developing and perfecting LCDM model.

References

[1]  Perivolaropoulos, L. and Skara, F. (2022) New Astronomy Reviews, 95, 101659-101764.
https://doi.org/10.1016/j.newar.2022.101659
[2]  Abdalla, E., Abellán, G.F., Aboubrahim, A., et al. (2022) Journal of High Energy Astrophysics, 34, 49-211.
[3]  Vagnozzi, S. (2023) Universe, 9, 393.
[4]  Chang, Z., Chen, S.X., Wen, H.B., et al. (2005) International Journal of Modern Physics A, 20, 2157-2172.
https://doi.org/10.1142/S0217751X05020720
[5]  Vikram, V., et al. (2015) Wide-Field Lensing Mass Maps from DES Science Verification Data.
[6]  Binney, J. and McMillan, P. (2011) Monthly Notices of the Royal Astronomical Society, 413, 1889-1898.
https://doi.org/10.1111/j.1365-2966.2011.18268.x
[7]  Esko, G. and Chris, F. (2010) Monthly Notices of the Royal Astronomical Society, 405, 545-552.
[8]  Zhou, Y., Li, X.Y., Huang, Y., Zhang, H.W., et al. (2023) The Astrophysical Journal, 946, 73-87.
https://doi.org/10.3847/1538-4357/acadd9
[9]  Jing, Y.P. and Suto, Y. (2002) The Astrophysical Journal, 574, 538-553.
https://doi.org/10.1086/341065
[10]  Hayashi, E., Navarro, J.F. and Springel, V. (2007) Monthly Notices of the Royal Astronomical Society, 377, 50-62.
[11]  Pato, M. and Iocco, F. (2015) The Astrophysical Journal Letters, 803, L3.
https://doi.org/10.1088/2041-8205/803/1/L3
[12]  Massimo, P., Paolo, S. and Fulvio, S. (1996) MNRAS, 281, 27-48.
https://doi.org/10.1093/mnras/278.1.27
[13]  Dye, S., Evans, N.W., et al. (2010) Monthly Notices of the Royal Astronomical Society, 388, 384-392.
https://doi.org/10.1111/j.1365-2966.2008.13401.x
[14]  Bellagamba, F., Tessore, N. and Metcalf, R.B. (2017) Monthly Notices of the Royal Astronomical Society, 464, 4823-4834.
https://doi.org/10.1093/mnras/stw2726
[15]  John, E.K.A., Richard, N.H.B. and Felix, S.B. (2012) Proceedings of SPIEThe International Society for Optical Engineering, 8127, 777-785.
[16]  Peebles, P.J.E. (1980) The Large Scale Structure of the Universe. Princeton University Press, Princeton, 435 p.
[17]  Young, B.-L. (2017) Frontiers in Physics, 12, Article ID: 121201.
https://doi.org/10.1007/s11467-017-0680-z
[18]  Wetzel, A.R., et al. (2016) The Astrophysical Journal, 827, 23.
https://doi.org/10.3847/0004-637X/827/1/23
[19]  Kelley, T., et al. (2019) MNRAS, 487, 4409-4423.
https://doi.org/10.1093/mnras/stz1553
[20]  Drlica-Wagner, A., et al. (2020) The Astrophysical Journal, 893, 47.
https://doi.org/10.3847/1538-4357/ab7eb9
[21]  Aghanim, N., et al. (2020) A&A, 641, A6.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133