The behavior of the quantum correlations, information scrambling and the non-Markovianity of three entangling qubits systems via Rashba is discussed. The results showed that, the three physical quantities oscillate between their upper and lower bounds, where the number of oscillations increases as the Rashba interaction strength increases. The exchanging rate of these three quantities depends on the Rashba strength, and whether the entangled state is generated via direct/indirect interaction. Moreover, the coherence parameter can be used as a control parameter to maximize or minimize the three physical quantities.
References
[1]
Nielsen, M.A. and Chuang, I.L. (2019) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.
[2]
Cariolaro, G. (2015) Quantum Communications. Springer, Cham. https://doi.org/10.1007/978-3-319-15600-2
[3]
Dotsenko, I.S. and Korobka, R. (2018) Entanglement Swapping in the Presence of White and Color Noise. Communications in Theoretical Physics, 69, 143-153. https://doi.org/10.1088/0253-6102/69/2/143
[4]
Eid, A. and Metwally, N. (2023) Entangled Kernel of Coded Information Using Quantum String. International Journal of Quantum Information, 21, Article ID: 2350034. https://doi.org/10.1142/S021974992350034X
[5]
Yu, T. and Eberly, J.H. (2009) Sudden Death of Entanglement. Science, 323, 598-601. https://doi.org/10.1126/science.1167343
[6]
Radwan, A., El-Shahat, T. and Metwally, N. (2020) Restrain the Losses of the Entanglement and the Non-Local Coherent Quantum Advantage of Accelerated Quantum Systems. Optik, 220, Article ID: 165190. https://doi.org/10.1016/j.ijleo.2020.165190
[7]
Ferreira, M., Rojas, O. and Rojas, M. (2023) Thermal Entanglement and Quantum Coherence of a Single Electron in a Double Quantum Dot with Rashba Interaction. Physical Review A, 107, Article ID: 052408. https://doi.org/10.1103/PhysRevA.107.052408
[8]
Yu, T. and Eberly, J.H. (2002) Phonon Decoherence of Quantum Entanglement, Robust and Fragile States. Physical Review B, 66, Article ID: 193306. https://doi.org/10.1103/PhysRevB.66.193306
[9]
Yu, T. and Eberly, J.H. (2004) Finite-Time Disentanglement via Spontaneous Emission. Physical Review Letters, 93, Article ID: 140404. https://doi.org/10.1103/PhysRevLett.93.140404
[10]
Metwally, N. (2014) Single and Double Changes of Entanglement. Journal of the Optical Society of America B-Optical Physics, 31, 691-696. https://doi.org/10.1364/JOSAB.31.000691
[11]
Dür, W. and Briegel, H.J. (2004) Stability of Macroscopic Entanglement under Decoherence. Physical Review Letters, 92, Article ID: 180403. https://doi.org/10.1103/PhysRevLett.92.180403
[12]
Ding, Y., Xie, S. and Eberly, J.H. (2021) Sudden Freezing and Thawing of Entanglement Sharing in a Shrunken Volume. Physical Review A, 103, Article ID: 032418. https://doi.org/10.1103/PhysRevA.103.032418
[13]
Metwally, N. and Ebrahim, F. (2020) Fisher Information of Accelerated Two-Qubit System in the Presence of the Color and White Noisy Channels. International Journal of Modern Physics B, 34, Article ID: 2050027. https://doi.org/10.1142/S0217979220500277
[14]
Chiang, K.T. and Zhang, W.M. (2021) Non-Markovian Decoherence Dynamics of Strong-Coupling Hybrid Quantum Systems: A Master Equation Approach. Physical Review A, 103, Article ID: 013714. https://doi.org/10.1103/PhysRevA.103.013714
[15]
He, Z., Zou, J., Li, L. and Shao, B. (2011) Effective Method of Calculating the Non-Markovianity Nfor Single-Channel Open Systems. Physical Review A, 83, Article ID: 012108. https://doi.org/10.1103/PhysRevA.83.012108
[16]
Wang, Y., Hao, Z.Y., Li, J.K., Liu, Z.H., Sun, K., Xu, J.S., Li, C.F. and Guo, G.C. (2023) Observation of Non-Markovian Evolution of Einstein-Podolsky-Rosen Steering. Physical Review Letters, 130, Article ID: 200202. https://doi.org/10.1103/PhysRevLett.130.200202
[17]
Heide, M., Bihlmayer, G. and Blügel, S. (2008) Dzyaloshinskii-Moriya Interaction Accounting for the Orientation of Magnetic Domains in Ultrathin Films: Fe/W(110). Physical Review B, 78, Article ID: 140403. https://doi.org/10.1103/PhysRevB.78.140403
[18]
Qiang, Z., Zhang, X.P., Zhi, Q.J. and Ren, Z.Z. (2009) Entanglement Dynamics of a Heisenberg Chain with Dzyaloshinskii-Moriya Interaction. Chinese Physics B, 18, 3210-3214. https://doi.org/10.1088/1674-1056/18/8/019
[19]
Hayakawa, Y., Imai, Y. and Kohno, H. (2023) Dzyaloshinskii-Moriya Interaction in Strongly Spin-Orbit Coupled Systems: General Formula and Application to Topological and Rashba Materials. Physical Review B, 108, Article ID: 064409. https://doi.org/10.1103/PhysRevB.108.064409
[20]
Oliveira, I.S., Bonagamba, T.J., Sarthour, R.S., Freitas, J.C.C. and deAzevedo, E.R. (2007) NMR Quantum Information Processing. Elsevier, Oxford.
[21]
Mohammed, A.R., Ahmed, A.H., El-Shahat, T.M. and Metwally, N. (2021) Quantum Steering over an Entangled Network That Is Generated via Dipolar Interaction. Physica A: Statistical Mechanics and Its Applications, 584, Article ID: 126380. https://doi.org/10.1016/j.physa.2021.126380
[22]
Molenkamp, L.W., Schmidt, G. and Bauer, W. (2001) Rashba Hamiltonian and Electron Transport. Physical Review B, 64, Article ID: 121202. https://doi.org/10.1103/PhysRevB.64.121202
[23]
Horodecki, P. (1997) Separability Criterion and Inseparable Mixed States with Positive Partial Transposition. Physics Letters A, 232, 333-339. https://doi.org/10.1016/S0375-9601(97)00416-7
[24]
Berrada, K., El Baz, M., Eleuch, H. and Hassouni, Y. (2010) A Comparative Study of Negativity and Concurrence Based on Spin Coherent States. International Journal of Modern Physics C, 21, 291-305. https://doi.org/10.1142/S0129183110015129
[25]
Metwally, N. (2021) Steering Information in Quantum Network. 3rd Smart Cities Symposium (SCS 2020). https://doi.org/10.1049/icp.2021.1341
[26]
Khan, N.A., Jan, M., Shah, M., Sajid, M., Zaman, Q., Ali, M. and Khan, D. (2022) Entanglement-Based Measure of Non-Makovianity in Relativistic Frame. Optik, 260, Article ID: 169016. https://doi.org/10.1016/j.ijleo.2022.169016
[27]
Hesabi, S., Afshar, D. and Paris, M.G.A. (2019) Non-Markovian Evolution of a Two-Level System Interacting with a Fluctuating Classical Field via Dipole Interaction. Optics Communications, 437, 377-381. https://doi.org/10.1016/j.optcom.2019.01.018
[28]
Jan, M., Xu, X.Y., Wang, Q.Q., Chen, Z., Han, Y.J., Li, C.F. and Guo, G.C. (2019) Dipole-Dipole Interactions Enhance Non-Markovianity and Protect Information against Dissipation. Chinese Physics B, 28, Article ID: 090303. https://doi.org/10.1088/1674-1056/ab37f2
[29]
Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J., Sen(De), A., Sen, U. and Synak-Radtke, B. (2005) Local versus Nonlocal Information in Quantum-Information Theory: Formalism and Phenomena. Physical Review A, 71, Article ID: 062307. https://doi.org/10.1103/PhysRevA.71.062307
[30]
Witten, E. (2020) A Mini-Introduction to Information Theory. La Rivista Del Nuovo Cimento, 43, 187-227. https://doi.org/10.1007/s40766-020-00004-5
[31]
Abd-Rabbou, M.Y., Metwally, N., Ahmed, M.M.A. and Obada, A.S.F. (2019) Suppressing the Information Losses of Accelerated Qubit-Qutrit System. International Journal of Quantum Information, 17, Article ID: 1950032. https://doi.org/10.1142/S0219749919500321