|
电动车充电器锂电池电量检测系统设计
|
Abstract:
近年来,锂电池在便携式电子产品、电动汽车和可再生能源系统中变得无处不在。测量结果不准确、不全面是一部分锂电池电量检测系统存在的主要问题,因其忽略了能够影响电池性能的重要因素,即温度参数,另外还有电池自身的老化(SOH)及内阻变化等。而随着电池使用次数的增加,电池不断老化,电池容量就会逐渐减小,若缺少了电池额定容量满循环校准这一步骤,将会加大电量的测量误差,这一误差还会随电池使用频率累积增大。本文主要以STM32单片机微控制器为核心,针对便携式的小功率产品,设计一个锂电池电量检测系统,并对锂电池组的充、放电过程进行保护。锂电池组的电流、电压、温度参数将被系统控制器及时采集,为电池组剩余电量的检测和电池组充放电保护提供理论依据。论文的电池性能检测系统具有测量精度高、响应速度快、成本低、易操作、系统稳定等优势。
In recent years, lithium batteries have become ubiquitous in portable electronic products, electric vehicles, and renewable energy systems. The inaccurate and incomplete measurement results are the main problems of some lithium battery level detection systems, as they overlook important factors that can affect battery performance, such as temperature parameters, as well as battery aging (SOH) and internal resistance changes. As the number of battery uses increases, the battery continues to age, and electricity. The pool capacity will gradually decrease. If the step of full cycle calibration of the rated battery capacity is missing, it will increase the measurement error of the battery, and this error will accumulate and increase with the frequency of battery use. This article mainly focuses on the STM32 microcontroller microcontroller as the core, targeting portable low-power products develop a lithium battery level detection system and protect the charging and discharging processes of the lithium battery pack. The current, voltage, and temperature parameters of the lithium battery pack will be collected in a timely manner by the system controller, providing a theoretical basis for the detection of remaining battery capacity and battery pack charging and discharging protection. The battery performance detection system in the paper has advantages such as high measurement accuracy, fast response speed, low cost, easy operation, and system stability.
[1] | Abu-Sharkh, S. and Doerffel, D. (2004) Rapid Test and Non-Linear Model Characterisation of Solid-Sate Lithium-Ion Battery. Power Sources, 130, 266-274. https://doi.org/10.1016/j.jpowsour.2003.12.001 |
[2] | Brady, J.L. (2010) First, Do No Harm: Making Infusion Pumps Safer. Biomedical Instrumentation & Technology, 44, 372-380. https://doi.org/10.2345/0899-8205-44.5.372 |
[3] | 王力臻, 马凤菊, 谷书华, 等. 短路电流以及影响因素[J]. 电池, 1999, 29(6): 260-261. |
[4] | Kim, H.J., Krishna, T.N.V., Zeb, K., et al. (2020) A Comprehensive Review of Li-Ion Battery Materials and Their Recycling Techniques. Electronics, 9, 1161. https://doi.org/10.3390/electronics9071161 |
[5] | 多智华, 李革臣. 模糊论在电池分类器中的应用[J]. 电池, 2000, 5(6): 100-103. |
[6] | 吴杰, 陈辉. 基于非线性拟合的电池剩余容量预测[J]. 蓄电池, 2021, 58(3): 123-127. |
[7] | 赵文艺. 基于AT89S51单片机的实验室数据采集系统的设计[J]. 电子世界, 2012(1): 60-61. |
[8] | Song, Y.X. and Feng, Y. (2011) Design of LED Dispiay Control System Based on AT89C52 Single Chip Microcomputer. Journal of Computers, 6, 718-724. https://doi.org/10.4304/jcp.6.4.718-724 |
[9] | 陈志椿. 基于3D打印技术下电子设备行业的应用研究[J]. 黑河学院学报, 2019, 10(1): 219-220. |
[10] | 钱铮, 杨代军, 刘金玲, 史惟澄, 马建新. 薄型流场对燃料电池性能影响的交流阻抗谱法研究[J]. 中国机械工程, 2012(24): 15-16. |