全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Rigidity Symmetry Line for Thermodynamic Fluid Equations-of-State

DOI: 10.4236/jmp.2024.155029, PP. 613-633

Keywords: Liquid-State Theory, Cluster Physics, Percolation Lines, Fluid Thermodynamics, Boyle Line, Rigidity-Symmetry Line

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report progress towards a modern scientific description of thermodynamic properties of fluids following the discovery (in 2012) of a coexisting critical density hiatus and a supercritical mesophase defined by percolation transitions. The state functions density ρ(p,T), and Gibbs energy G(p,T), of fluids, e.g. CO2, H2O and argon exhibit a symmetry characterised by the rigidity, ω = (dp/dρ)T, between gaseous and liquid states along any isotherm from critical (Tc) to Boyle (TB) temperatures, on either side of the supercritical mesophase. Here, using experimental data for fluid argon, we investigate the low-density cluster physics description of an ideal dilute gas that obeys Dalton’s partial pressure law. Cluster expansions in powers of density relate to a supercritical liquid-phase rigidity symmetry (RS) line (ω = ρrs(T) = RT) to gas phase virial coefficients. We show that it is continuous in all derivatives, linear within stable fluid phase, and relates analytically to the Boyle-work line (BW) (w = (p/ρ)T = RT), and to percolation lines of gas (PB) and liquid (PA) phases by: ρBW(T) = 2ρPA(T) = 3ρPB(T) = 3ρRS(T)/2 for T < TB. These simple relationships arise, because the higher virial coefficients (bn, n ≥ 4) cancel due to clustering equilibria, or become negligible at all temperatures (0 < T <

References

[1]  Gibbs, J.W. (1873) Transactions of the Connecticut Academy of Arts and Sciences, 2, 309-342.
[2]  van der Waals, J.D. (1873) On the Continuity of the Gaseous and Liquid States. Ph.D. Thesis, University of Leiden, Leiden. (In Dutch)
[3]  Sandler, S.I. and Woodcock, L.V. (2010) JCED Rowlinson Special Issue, 55, 4485-4490.
https://doi.org/10.1021/je1006828
[4]  Gibbs, J.W. (1878) Transactions of the Connecticut Academy of Arts and Sciences, 3, 343-524.
[5]  Hannay, J.B. (1882) Nature, 26, 370.
https://doi.org/10.1038/026370a0
[6]  NIST. Thermophysical Properties of Fluid Systems. Chemistry Webbook, Reference Number 69.
https://webbook.nist.gov/chemistry/fluid/
[7]  Woodcock, L.V. (2016) Journal of Modern Physics, 7, 760-773.
https://doi.org/10.4236/jmp.2016.78071
[8]  Khmelinskii, I. and Woodcock, L.V. (2020) Entropy, 22, 437-463.
https://doi.org/10.3390/e22040437
[9]  Maguire, J.F. and Woodcock, L.V. (2023) Journal of Molecular Liquids, 373, Article ID: 121199.
https://doi.org/10.1016/j.molliq.2023.121199
[10]  Powles, J.G. (1983) Journal of Physics C: Solid State Physics, 16, 503-514.
https://doi.org/10.1088/0022-3719/16/3/012
[11]  Yukalov, Y.L. (1991) Physics Reports, 208, 395-489.
https://doi.org/10.1016/0370-1573(91)90074-V
[12]  Woodcock, L.V. (2014) Natural Science, 6, 411-432.
https://doi.org/10.4236/ns.2014.66041
[13]  Wagner, W. and Pruss, A.A. (2002) Journal of Physical and Chemical Reference Data, 31, 387-535.
https://doi.org/10.1063/1.1461829
[14]  Tegler, C., Span, R. and Wagner, W. (1999) Journal of Physical and Chemical Reference Data, 28, 779-850.
https://doi.org/10.1063/1.556037
[15]  Sedunov, B. (2008) International Journal of Thermophysics, 11, 1-9.
[16]  Hansen, J.-P. and Macdonald, I.R. (2013) Theory of Simple Liquids. 4th Edition, Elsevier, Amsterdam.
[17]  Estrada-Alexanders, A.F., Guzmán, O.B. and Pérez-Vidal, B. (2012) Molecular Physics, 110, 1349-1358.
https://doi.org/10.1080/00268976.2012.655340
[18]  Woodcock, L.V. (2016) International Journal of Thermophysics, 37, 24-40.
https://doi.org/10.1007/s10765-015-2031-z
[19]  Michels, A., Levelt, J.M. and Wolkers, G.J. (1958) Physica, 24, 769-794.
https://doi.org/10.1016/S0031-8914(58)80093-2
[20]  Gilgen, R., Kleinrahm, R. and Wagner, W. (1994) The Journal of Chemical Thermodynamics, 26, 383-405.
https://doi.org/10.1006/jcht.1994.1048
[21]  Boyes, S.J. (1994) Chemical Physics Letters, 221, 467-475.
https://doi.org/10.1016/0009-2614(94)00303-3
[22]  Jager, B., Hellmann, R., Bich, E. and Vogel, E. (2010) Molecular Physics, 108, 105-115.
https://doi.org/10.1080/00268970903444744
[23]  Appfelbaum, E.M. and Vorob’ev, V.S. (2020) The Journal of Physical Chemistry (B), 124, 5021-5027.
https://doi.org/10.1021/acs.jpcb.0c02749
[24]  Kihara, T. (1953) Reviews of Modern Physics, 25, 831-843.
https://doi.org/10.1103/RevModPhys.25.831
[25]  Woodcock, L.V. (1970) Studies of the Thermodynamic and Structural Properties of Liquids by Computer Simulation. PhD Thesis, University of London, London, 32.
https://cieo.academia.edu/leslievwoodcock/phd-thesis

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413