|
Applied Physics 2024
机器学习识别六方伊辛晶格中的相位和相变
|
Abstract:
机器学习可以在对系统潜在特性缺乏先验知识的情况下,识别数据中的模式并发现物理系统的性质和物理量。在本文中,我们使用非监督机器学习技术——主成分分析(Principal Component Analysis, PCA)方法识别六方伊辛晶格的相和相变。研究表明,PCA可以成功识别六方伊辛晶格的相变并定位相变临界温度。此外,通过PCA所获得的第一和第二主成分还可用于确定晶格的磁化强度和磁化率。
Machine learning can identify patterns in data and discover the properties and physical quantities of physical systems without prior knowledge of the system’s latent characteristics. In this paper, we employ unsupervised machine learning techniques—specifically, Principal Component Analysis (PCA)—to identify the phases and phase transitions of the hexagonal Ising lattice. Our study demonstrates that PCA can successfully identify the phase transitions of the hexagonal Ising lattice and locate the critical temperature of these transitions. Furthermore, the first and second principal components obtained through PCA can also be used to determine the lattice's magnetization and susceptibility.
[1] | Schütt, K.T., Glawe, H., Brockherde, F., et al. (2014) How to Represent Crystal Structures for Machine Learning: Towards Fast Prediction of Electronic Properties. Physical Review B, 89, Article ID: 205118. https://doi.org/10.1103/PhysRevB.89.205118 |
[2] | Snyder, J.C., Rupp, M., Hansen, K., et al. (2012) Finding Density Functionals with Machine Learning. Physical Review Letters, 108, Article ID: 253002. https://doi.org/10.1103/PhysRevLett.108.253002 |
[3] | Rupp, M., Tkatchenko, A., Müller, K.R., et al. (2012) Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning. Physical Review Letters, 108, Article ID: 058301. https://doi.org/10.1103/PhysRevLett.108.058301 |
[4] | Wang, L. (2016) Discovering Phase Transitions with Unsupervised Learning. Physical Review B, 94, Article ID: 195105. https://doi.org/10.1103/PhysRevB.94.195105 |
[5] | Onsager, L. (1944) Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition. Physical Review, 65, Article No. 117. https://doi.org/10.1103/PhysRev.65.117 |
[6] | Wang, C. and Zhai, H. (2017) Machine Learning of Frustrated Classical Spin Models. I. Principal Component Analysis. Physical Review B, 96, Article ID: 144432. https://doi.org/10.1103/PhysRevB.96.144432 |
[7] | Wetzel, S.J. (2017) Unsupervised Learning of Phase Transitions: From Principal Component Analysis to Variational Autoencoders. Physical Review E, 96, Article ID: 022140. https://doi.org/10.1103/PhysRevE.96.022140 |
[8] | Miyajima, Y. and Mochizuki, M. (2023) Machine-Learning Detection of the Berezinskii-Kosterlitz-Thouless Transition and the Second-Order Phase Transition in XXZ Models. Physical Review B, 107, Article ID: 134420. https://doi.org/10.1103/PhysRevB.107.134420 |
[9] | Guo, W. and He, L. (2023) Learning Phase Transitions from Regression Uncertainty: A New Regression-Based Machine Learning Approach for Automated Detection of Phases of Matter. New Journal of Physics, 25, Article ID: 083037. https://doi.org/10.1088/1367-2630/acef4e |
[10] | Sanders, D.P. (2009) Introducción a las transiciones de faseyasusimulación. Universidad Autónoma de México, México. |
[11] | Hu, W., Singh, R.R.P. and Scalettar, R.T. (2017) Discovering Phases, Phase Transitions, and Crossovers through Unsupervised Machine Learning: A Critical Examination. Physical Review E, 95, Article ID: 062122. https://doi.org/10.1103/PhysRevE.95.062122 |
[12] | Eltinge, S.L. (2015) Numerical Ising Model Simulations on Exactly Solvable and Randomized Lattices. Massachusetts Institute of Technology, Cambridge. https://web.mit.edu/8.334/www/grades/projects/projects15/EltingeStephen.pdf |
[13] | Shlens, J. (2014) A Tutorial on Principal Component Analysis. arXiv: 1404.1100. https://arxiv.org/abs/1404.1100 |