全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微藻对新污染物胁迫响应机制的研究进展
Research Progress on Response Mechanism of Microalgae to New Pollutant Stress

DOI: 10.12677/aep.2024.142043, PP. 324-332

Keywords: 新兴污染物,微藻,响应机制,毒性作用
Emerging Pollutants
, Microalgae, Response Mechanism, Toxic Effects

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着分析技术和环境监测手段的进步,新兴污染物在环境中已普遍检出,其潜在的环境危害近年来受到广泛关注和研究。微藻作为水生生态系统中的初级生产者,不仅在维持生态系统的稳定与平衡中发挥着至关重要的作用,其对环境变化的高度敏感性也使其成为研究环境毒理学影响的理想生物模型。本文系统综述了微藻对于5类新兴污染物包括全氟化合物、多环芳烃、微塑料、合成酚类抗氧化剂及有机磷酸酯等在内的响应机制,重点探讨了微藻在污染物胁迫下的生长和形态、对污染物的吸收和代谢、氧化应激反应、光合作用及基因表达等方面,分析了新兴污染物胁迫下微藻的响应机制,归纳了新兴污染物作用于微藻的毒性影响与可能的作用机理,通过总结和分析提出了建议和展望。
With the development of analysis technology and environmental monitoring means, emerging pollutants have been widely detected in the environment, and their potential environmental harm has been widely concerned and studied in recent years. As primary producers in aquatic ecosystems, microalgae not only play a vital role in maintaining the stability and balance of the ecosystem, but also their high sensitivity to environmental change makes them an ideal biological model for studying the effects of environmental toxicology. In this paper, the response mechanism of microalgae to five emerging pollutants, including perfluorinated compounds, polycyclic aromatic hydrocarbons, microplastics, synthetic phenolic antioxidants and organophosphate, was systematically reviewed. The growth and morphology of microalgae under pollutant stress, absorption and metabolism of pollutants, oxidative stress reaction, photosynthesis and gene expression were mainly discussed. This paper analyzed the response mechanism of microalgae under the stress of emerging pollutants, summarized the toxic effects of emerging pollutants on microalgae and the possible mechanism of action, and put forward suggestions and prospects through summary and analysis.

References

[1]  Richardson, S.D. (2002) Environmental Mass Spectrometry: Emerging Contaminants and Current Issues. Analytical Chemistry, 12, 2719-2742.
https://doi.org/10.1021/ac020211h
[2]  Fries, E. and Püttmann, W. (2004) Monitoring of the Antioxidant BHT and Its Metabolite BHT-CHO in German River Water and Ground Water. Science of the Total Environment, 319, 269-282.
https://doi.org/10.1016/S0048-9697(03)00447-9
[3]  宋楚儿, 孟振, 张正, 等. 微藻在水产养殖水质净化中的应用[J]. 浙江海洋大学学报(自然科学版), 2023, 42(4): 330-337.
[4]  Abdullah, B., Muhammad, S.A.F.A., Shokravi, Z., et al. (2019) Fourth Generation Biofuel: A Review on Risks and Mitigation Strategies. Renewable and Sustainable Energy Reviews, 107, 37-50.
https://doi.org/10.1016/j.rser.2019.02.018
[5]  Kwok, Y.J., Revathy, S., Wayne, C.K., et al. (2021) Advancement of Green Technologies: A Comprehensive Review on the Potential Application of Microalgae Biomass. Chemosphere, 281, Article 130886.
https://doi.org/10.1016/j.chemosphere.2021.130886
[6]  王渤, 张立杰, 陈俊任, 等. 微藻处理含抗生素类废水研究进展[J/OL]. 工业水处理: 1-14.
https://doi.org/10.19965/j.cnki.iwt.2023-0622, 2024-04-16.
[7]  Salmaso, N., Flores, L.N. and Padisák, J. (2015) Functional Classifications and Their Application in Phytoplankton Ecology. Freshwater Biology, 60, 603-619.
[8]  Dranguet, P., Cosio, C., Le Faucheur, S., et al. (2017) Transcriptomic Approach for Assessment of the Impact on Microalga and Macrophyte of in-situ Exposure in River Sites Contaminated by Chlor-Alkali Plant Effluents. Water Research, 121, 86-94.
https://doi.org/10.1016/j.watres.2017.05.020
[9]  Du, C., Zhang, B., He, Y., et al. (2017) Biological Effect of Aqueous C60 Aggregates on Scenedesmus obliquus Revealed by Transcriptomics and Non-Targeted Metabolomics. Journal of Hazardous Materials, 324, 221-229.
https://doi.org/10.1016/j.jhazmat.2016.10.052
[10]  Paul, A.G., Jones, K.C. and Sweetman, A.J. (2009) A First Global Production, Emission, and Environmental Inventory for Perfluorooctane Sulfonate. Environmental Science & Technology, 43, 386-392.
https://doi.org/10.1021/es802216n
[11]  Prevedouros, K., Cousins, I.T., Buck, R.C., et al. (2006) Sources, Fate and Transport of Perfluorocarboxylates. Environmental Science & Technology, 40, 32-44.
https://doi.org/10.1021/es0512475
[12]  洪喻, 郝立翀, 陈足音. 新兴污染物对微藻的毒性作用与机制研究进展[J]. 生态毒理学报, 2019, 14(5): 22-45.
[13]  Xu, D., Li, C., Chen, H., et al. (2013) Cellular Response of Freshwater Green Algae to Perfluorooctanoic Acid Toxicity. Ecotoxicology and Environmental Safety, 88, 103-107.
https://doi.org/10.1016/j.ecoenv.2012.10.027
[14]  毕丽玫, 郝吉明, 宁平, 等. 昆明城区大气PM2.5中PAHs的污染特征及来源分析[J]. 中国环境科学, 2015, 35(3): 659-667.
[15]  陈刚, 周潇雨, 吴建会, 等. 成都市冬季PM2.5中多环芳烃的源解析与毒性源解析[J]. 中国环境科学, 2015, 35(10): 3150-3156.
[16]  Yuan, H., Liu, E., Zhang, E., et al. (2017) Historical Records and Sources of Polycyclic Aromatic Hydrocarbons (PAHs) and Organochlorine Pesticides (OCPs) in Sediment from a Representative Plateau Lake, China. Chemosphere, 173, 78-88.
https://doi.org/10.1016/j.chemosphere.2017.01.047
[17]  Khuman, S.N., Chakraborty, P., Cincinelli, A., et al. (2018) Polycyclic Aromatic Hydrocarbons in Surface Waters and Riverine Sediments of the Hooghly and Brahmaputra Rivers in the Eastern and Northeastern India. Science of the Total Environment, 636, 751-760.
https://doi.org/10.1016/j.scitotenv.2018.04.109
[18]  周文敏, 傅德黔, 孙宗光. 水中优先控制污染物黑名单[J]. 中国环境监测, 1990, 6(4): 1-3.
[19]  Wang, P., Luo, L., Ke, L., et al. (2013) Combined Toxicity of Polycyclic Aromatic Hydrocarbons and Heavy Metals to Biochemical and Antioxidant Responses of Free and Immobilized Selenastrum capricornutum. Environmental Toxicology and Chemistry, 32, 673-683.
https://doi.org/10.1002/etc.2090
[20]  Adams, M.S., Dillon, C.T., Vogt, S., et al. (2016) Copper Uptake, Intracellular Localization, and Speciation in Marine Microalgae Measured by Synchrotron Radiation X-Ray Fluorescence and Absorption Microspectroscopy. Environmental Science & Technology, 50, 8827-8839.
https://doi.org/10.1021/acs.est.6b00861
[21]  Lei, A.P., Wong, Y.S. and Tam, N. (2002) Removal of Pyrene by Different Microalgal Species. Water Science and Technology, 46, 195-201.
https://doi.org/10.2166/wst.2002.0738
[22]  Lei, A., Hu, Z., Wong, Y., et al. (2006) Antioxidant Responses of Microalgal Species to Pyrene. Journal of Applied Phycology, 18, 67-78.
https://doi.org/10.1007/s10811-005-9016-4
[23]  Sabatini, S.E., Juarez, A.B., Eppis, M.R., et al. (2009) Oxidative Stress and Antioxidant Defenses in Two Green Microalgae Exposed to Copper. Ecotoxicology and Environmental Safety, 72, 1200-1206.
https://doi.org/10.1016/j.ecoenv.2009.01.003
[24]  Pinto, E., Sigaud-Kutner, T.C., Leitao, M.A., et al. (2003) Heavy Metal-Induced Oxidative Stress in Algae. Journal of Phycology, 39, 1008-1018.
https://doi.org/10.1111/j.0022-3646.2003.02-193.x
[25]  Shim, W.J., Hong, S.H. and Eo, S.E. (2017) Identification Methods in Microplastic Analysis: A Review. Analytical Methods, 9, 1384-1391.
https://doi.org/10.1039/C6AY02558G
[26]  Yang, W., Gao, X., Wu, Y., et al. (2020) The Combined Toxicity Influence of Microplastics and Nonylphenol on Microalgae Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 195, Article 110484.
https://doi.org/10.1016/j.ecoenv.2020.110484
[27]  Wu, Y., Guo, P., Zhang, X., et al. (2019) Effect of Microplastics Exposure on the Photosynthesis System of Freshwater Algae. Journal of Hazardous Materials, 374, 219-227.
https://doi.org/10.1016/j.jhazmat.2019.04.039
[28]  Lagarde, F., Olivier, O., Zanella, M., et al. (2016) Microplastic Interactions with Freshwater Microalgae: Hetero-Aggregation and Changes in Plastic Density Appear Strongly Dependent on Polymer Type. Environmental Pollution, 215, 331-339.
https://doi.org/10.1016/j.envpol.2016.05.006
[29]  Canniff, P.M. and Hoang, T.C. (2018) Microplastic Ingestion by Daphnia magna and Its Enhancement on Algal Growth. Science of the Total Environment, 633, 500-507.
https://doi.org/10.1016/j.scitotenv.2018.03.176
[30]  Lee, S., Kim, M., Hur, S., et al. (2023) Assessment of Safety, Effects, and Muscle-Specific Accumulation of Dietary Butylated Hydroxytoluene (BHT) in Paralichthys olivaceus. Aquaculture Nutrition, 2023, Article ID: 1381923.
https://doi.org/10.1155/2023/1381923
[31]  Sarmah, R., Kanta, Bhagabati, S., Dutta, R., et al. (2020) Toxicity of a Synthetic Phenolic Antioxidant, Butyl Hydroxytoluene (BHT), in Vertebrate Model Zebrafish Embryo (Danio rerio). Aquaculture Research, 51, 3839-3846.
https://doi.org/10.1111/are.14732
[32]  Cho, K., Lee, C., Ko, K., et al. (2016) Use of Phenol-Induced Oxidative Stress Acclimation to Stimulate Cell Growth and Biodiesel Production by the Oceanic Microalga Dunaliella salina. Algal Research, 17, 61-66.
https://doi.org/10.1016/j.algal.2016.04.023
[33]  Martins, P.L.G., Marques, L.G. and Colepicolo, P. (2015) Antioxidant Enzymes Are Induced by Phenol in the Marine Microalga Lingulodinium polyedrum. Ecotoxicology and Environmental Safety, 116, 84-89.
https://doi.org/10.1016/j.ecoenv.2015.03.003
[34]  Wang, Y., He, L., Lv, G., Liu, W., Liu, J., Ma, X. and Sun, X. (2019) Distribution, Transformation and Toxicity Evaluation of 2,6-Di-Tert-Butyl-Hydroxytotulene in Aquatic Environment. Environmental Pollution, 255, Article 113330.
https://doi.org/10.1016/j.envpol.2019.113330
[35]  Xinfeng, X., Wenfang, L., Shuangwei, L., et al. (2023) The Growth Inhibition of Polyethylene Nanoplastics on the Bait-Microalgae Isochrysis galbana Based on the Transcriptome Analysis. Microorganisms, 11, Article 1108.
https://doi.org/10.3390/microorganisms11051108
[36]  Duan, W., Meng, F., Lin, Y., et al. (2017) Toxicological Effects of Phenol on Four Marine Microalgae. Environmental Toxicology and Pharmacology, 52, 170-176.
https://doi.org/10.1016/j.etap.2017.04.006
[37]  Yan, Z., Feng, C., Leung, K.M.Y., et al. (2022) Insights into the Geographical Distribution, Bioaccumulation Characteristics, and Ecological Risks of Organophosphate Esters. Journal of Hazardous Materials, 445, Article 130517.
https://doi.org/10.1016/j.jhazmat.2022.130517
[38]  Zhenfei, Y., Chenglian, F., Xiaowei, J., et al. (2022) Organophosphate Esters Cause Thyroid Dysfunction via Multiple Signaling Pathways in Zebrafish Brain. Environmental Science and Ecotechnology, 12, Article 100198.
https://doi.org/10.1016/j.ese.2022.100198
[39]  Liu, Q., Tang, X., Jian, X., et al. (2020) Toxic Effect and Mechanism of Tris (1,3-Dichloro-2-Propyl) Phosphate (TDCPP) on the Marine Alga Phaeodactylum tricornutum. Chemosphere, 252, Article 126467.
https://doi.org/10.1016/j.chemosphere.2020.126467
[40]  Liu, Q., Tang, X., Wang, Y., et al. (2019) ROS Changes Are Responsible for Tributyl Phosphate (TBP)-Induced Toxicity in the Alga Phaeodactylum tricornutum. Aquatic Toxicology, 208, 168-178.
https://doi.org/10.1016/j.aquatox.2019.01.012
[41]  Zhang, X., Chen, H., Wang, H., et al. (2021) Time-Course Effects of Tris (1,3-Dichloro-2-Propyl) Phosphate (TDCPP) on Chlorella pyrenoidosa: Growth Inhibition and Adaptability Mechanisms. Journal of Hazardous Materials, 402, Article 123784.
https://doi.org/10.1016/j.jhazmat.2020.123784

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413