全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

SARS-CoV-2主蛋白酶的表达、纯化和一种新型晶体结构的研究
Expression and Purification of SARS-CoV-2 Main Protease and Study of Novel Crystal Structure

DOI: 10.12677/hjbm.2024.142025, PP. 229-239

Keywords: SARS-CoV-2,Mpro,金团簇,蛋白质表达与纯化,X射线晶体结构
SARS-CoV-2
, Mpro, Gold Cluster, Protein Expression and Purification, X-ray Crystal Structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

新型冠状病毒SARS-CoV-2的主蛋白酶(Main Protease, Mpro),也称为3-糜蛋白酶样蛋白酶(3CLpro),在病毒复制的过程中发挥核心作用。Mpro的结构和功能在β-冠状病毒中相对保守,在人体内没有同源蛋白,因此是抗病毒药物开发的关键靶点。本研究完成了SARS-CoV-2 Mpro的原核表达与纯化,获得具有高纯度和高均一性的蛋白质样品。利用气相扩散坐滴法开展了Mpro的结晶筛选,获得单晶体后将其浸泡在由谷胱甘肽包裹的金团簇纳米材料溶液中,成功解析了仅有第156位半胱氨酸结合一个金离子的一个新型X射线衍射晶体结构。结构分析发现,Mpro蛋白的Cys156结合金离子后Asp153~Cys156区域的构象发生了~0.6 ?的偏移,推测该构象变化进一步通过变构效应抑制Mpro的生物功能,为新冠病毒的纳米型抑制剂的研发提供了新的信息。
The main protease (Mpro) of the novel coronavirus SARS-CoV-2, also known as 3C-like protease (3CLpro), plays a central role in the virus replication process. The structure and function of Mpro are relatively conserved in β-coronaviruses and there is no homologous protein in human, making it a key target for antiviral drug development. In this study, we successfully completed the prokaryotic expression and purification of SARS-CoV-2 Mpro, obtaining a high-purity and high-homo- geneity protein sample. Crystallization screening of Mpro was carried out using the vapor-diffusion sitting-drop method. After obtaining single crystals, they were soaked in a solution of the nano-materialglutathione-protected Au clusters, resulting in a novel X-ray diffraction crystal structure with only one cysteine at position 156 binding to one Au(I) ion. Structural analysis revealed a ~0.6 ? displacement in the conformation of the Asp153~Cys156 region of the Mpro protein upon binding of the Cys156 to the gold ion, suggesting that this conformational change further inhibits the biological function of Mpro through an allosteric effect, providing new information for the development of novel coronavirus inhibitors.

References

[1]  Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., Chen, H.D., Chen, J., Luo, Y., Guo, H., Jiang, R.D., Liu, M.Q., Chen, Y., Shen, X.R., Wang, X., Zheng, X.S., Zhao, K., Chen, Q.J., Deng, F., Liu, L.L., Yan, B., Zhan, F.X., Wang, Y.Y., Xiao, G.F. and Shi, Z.L. (2020) Addendum: A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature, 588, E6.
https://doi.org/10.1038/s41586-020-2951-z
[2]  Kreier, F. (2022) Deltacron: The Story of the Variant That Wasn’t. Nature, 602, 19.
https://doi.org/10.1038/d41586-022-00149-9
[3]  Khailany, R.A., Safdar, M. and Ozaslan, M. (2020) Genomic Characterization of a Novel SARS-CoV-2. Gene Reports, 19, Article ID: 100682.
https://doi.org/10.1016/j.genrep.2020.100682
[4]  Su, S., Wong, G., Shi, W.F., Liu, J., Lai, A.C.K., Zhou, J.Y., Liu, W.J., Bi, Y.H. and Gao, G.F. (2016) Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology, 24, 490-502.
https://doi.org/10.1016/j.tim.2016.03.003
[5]  Ye, Z.W., Yuan, S.F., Yuen, K.S., Fung, S.Y., Chan, C.P. and Jin, D.Y. (2020) Zoonotic Origins of Human Coronaviruses. International Journal of Biological Sciences, 16, 1686-1697.
https://doi.org/10.7150/ijbs.45472
[6]  Lee, J., Kenward, C., Worrall, L.J., Vuckovic, M., Gentile, F., Ton, A.T., Ng, M., Cherkasov, A., Strynadka, N.C.J. and Paetzel, M. (2022) X-Ray Crystallographic Characterization of the SARS-CoV-2 Main Protease Polyprotein Cleavage Sites Essential for Viral Processing and Maturation. Nature Communications, 13, Article No. 5196.
https://doi.org/10.1038/s41467-022-32854-4
[7]  Fan, K.Q., Wei, P., Feng, Q., Chen, S.D., Huang, C.K., Ma, L., Lai, B., Pei, J.F., Liu, Y., Chen, J.G. and Lai, L.H. (2004) Biosynthesis, Purification, and Substrate Specificity of Severe Acute Respiratory Syndrome Coronavirus 3C-Like Proteinase. Journal of Biological Chemistry, 279, 1637-1642.
https://doi.org/10.1074/jbc.M310875200
[8]  Zhao, Y., Zhu, Y., Liu, X., Jin, Z.M., Duan, Y.K., Zhang, Q., Wu, C.Y., Feng, L., Du, X.Y., Zhao, J.Y., Shao, M.L., Zhang, B., Yang, X.N., Wu, L.J., Ji, X.Y., Guddat, L.W., Yang, K.L., Rao, Z.H. and Yang, H.T. (2022) Structural Basis for Replicase Polyprotein Cleavage and Substrate Specificity of Main Protease from SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 119, e2117142119.
https://doi.org/10.1073/pnas.2117142119
[9]  Klemm, T., Ebert, G., Calleja, D.J., Allison, C.C., Richardson, L.W., Bernardini, J.P., Lu, B.G.C., Kuchel, N.W., Grohmann, C., Shibata, Y., Gan, Z.Y., Cooney, J.P., Doerflinger, M., Au, A.E., Blackmore, T.R., Van Noort, G.J.V., Geurink, P.P., Ovaa, H., Newman, J., Riboldi-Tunnicliffe, A., Czabotar, P.E., Mitchell, J.P., Feltham, R., Lechtenberg, B.C., Lowes, K.N., Dewson, G., Pellegrini, M., Lessene, G. and Komander, D. (2020) Mechanism and Inhibition of the Papain-Like Protease, PLpro, of SARS-CoV-2. EMBO Journal, 39, e106275.
https://doi.org/10.15252/embj.2020106275
[10]  Milligan, J.C., Zeisner, T.U., Papageorgiou, G., Joshi, D., Soudy, C., Ulferts, R., Wu, M., Lim, C.T., Tan, K.W., Weissmann, F., Canal, B., Fujisawa, R., Deegan, T., Nagaraj, H., Bineva-Todd, G., Basier, C., Curran, J.F., Howell, M., Beale, R., Labib, K., Reilly, N.O. and Diffley, J.F.X. (2021) Identifying SARS-CoV-2 Antiviral Compounds by Screening for Small Molecule Inhibitors of Nsp5 Main Protease. Biochemical Journal, 478, 2499-2515.
https://doi.org/10.1042/BCJ20210197
[11]  Li, X. and Song, Y.C. (2023) Structure and Function of SARS-CoV and SARS-CoV-2 Main Proteases and Their Inhibition: A Comprehensive Review. European Journal of Medicinal Chemistry, 260, Article ID: 115772.
https://doi.org/10.1016/j.ejmech.2023.115772
[12]  Stobart, C.C., Sexton, N.R., Munjal, H., Lu, X.T., Molland, K.L., Tomar, S., Mesecar, A.D. and Denison, M.R. (2013) Chimeric Exchange of Coronavirus Nsp5 Proteases (3CLpro) Identifies Common and Divergent Regulatory Determinants of Protease Activity. Journal of Virology, 87, 12611-12618.
https://doi.org/10.1128/JVI.02050-13
[13]  Lu, X.T., Lu, Y.Q. and Denison, M.R. (1996) Intracellular and in Vitro-Translated 27-KDa Proteins Contain the 3C-Like Proteinase Activity of the Coronavirus MHV-A59. Virology, 222, 375-382.
https://doi.org/10.1006/viro.1996.0434
[14]  Zhang, L.L., Lin, D.Z., Sun, X.Y.Y., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K. and Hilgenfeld, R. (2020) Crystal Structure of SARS-CoV-2 Main Protease Provides a Basis for Design of Improved α-Ketoamide Inhibitors. Science, 368, 409-412.
https://doi.org/10.1126/science.abb3405
[15]  Xiong, M.Y., Su, H.X., Zhao, W.F., Xie, H., Shao, Q. and Xu, Y.C. (2021) What Coronavirus 3C-Like Protease Tells Us: From Structure, Substrate Selectivity, to Inhibitor Design. Medicinal Research Reviews, 41, 1965-1998.
https://doi.org/10.1002/med.21783
[16]  Goyal, B. and Goyal, D. (2020) Targeting the Dimerization of the Main Protease of Coronaviruses: A Potential Broad-Spectrum Therapeutic Strategy. ACS Combinatorial Science, 22, 297-305.
https://doi.org/10.1021/acscombsci.0c00058
[17]  Costanzi, E., Kuzikov, M., Esposito, F., Albani, S., Demitri, N., Giabbai, B., Camasta, M., Tramontano, E., Rossetti, G., Zaliani, A. and Storici, P. (2021) Structural and Biochemical Analysis of the Dual Inhibition of MG-132 against SARS-CoV-2 Main Protease (Mpro/3CLpro) and Human Cathepsin-L. International Journal of Molecular Sciences, 22, Article 11779.
https://doi.org/10.3390/ijms222111779
[18]  Su, H.L., Zhou, F., Huang, Z.R., Ma, X.H., Natarajan, K., Zhang, M.C., Huang, Y. and Su, H.B. (2021) Molecular Insights into Small-Molecule Drug Discovery for SARS-CoV-2. Angewandte Chemie International Edition, 60, 9789-9802.
https://doi.org/10.1002/anie.202008835
[19]  Bergamaschi, G., Metrangolo, P. and Dichiarante, V. (2022) Photoluminescent Nanocluster-Based Probes for Bioimaging Applications. Photochemical & Photobiological Sciences, 21, 787-801.
https://doi.org/10.1007/s43630-021-00153-4
[20]  Qian, H.F., Zhu, M.Z., Wu, Z.K. and Jin, R.C. (2012) Quantum Sized Gold Nanoclusters with Atomic Precision. Accounts of Chemical Research, 45, 1470-1479.
https://doi.org/10.1021/ar200331z
[21]  Yuan, Q., Wang, Y.L., Zhao, L.N., Liu, R., Gao, F.P., Gao, L. and Gao, X.Y. (2016) Peptide Protected Gold Clusters: Chemical Synthesis and Biomedical Applications. Nanoscale, 8, 12095-12104.
https://doi.org/10.1039/C6NR02750D
[22]  Negishi, Y., Nobusada, K. and Tsukuda, T. (2005) Glutathione-Protected Gold Clusters Revisited: Bridging the Gap Between Gold(I)-Thiolate Complexes and Thiolate-Protected Gold Nanocrystals. Journal of the American Chemical Society, 127, 5261-5270.
https://doi.org/10.1021/ja042218h
[23]  Zhou, C., Hao, G.Y., Thomas, P., Liu, J.B., Yu, M.X., Sun, S.S., Oz, O., Sun, X.K. and Zheng, J. (2013) Near-Infrared Emitting Radioactive Gold Nanoparticles with Molecular Pharmacokinetics. Angewandte Chemie International Edition, 51, 10118-10122.
https://doi.org/10.1002/anie.201203031
[24]  Zhou, C., Sun, C., Yu, M.X., Qin, Y.P., Wang, J.G., Kim, M. and Zheng, J. (2010) Luminescent Gold Nanoparticles with Mixed Valence States Generated from Dissociation of Polymeric Au(I) Thiolates. The Journal of Physical Chemistry C, 114, 7727-7732.
https://doi.org/10.1021/jp9122584
[25]  Kao, H.W., Lin, Y.Y., Chen, C.C., Chi, K.H., Tien, D.C., Hsia, C.C., Lin, W.J., Chen, F.D., Lin, M.H. and Wang, H.E. (2014) Biological Characterization of Cetuximab-Conjugated Gold Nanoparticles in a Tumor Animal Model. Nanotechnology, 25, Article ID: 295102.
https://doi.org/10.1088/0957-4484/25/29/295102
[26]  Zeng, C.J., Li, T., Das, A., Rosi, N.L. and Jin, R.C. (2013) Chiral Structure of Thiolate-Protected 28-Gold-Atom Nanocluster Determined by X-Ray Crystallography. Journal of the American Chemical Society, 135, 10011-10013.
https://doi.org/10.1021/ja404058q
[27]  Shiang, Y.C., Huang, C.C., Chen, W.Y., Chen, P.C. and Chang, H. T. (2012) Fluorescent Gold and Silver Nanoclusters for the Analysis of Biopolymers and Cell Imaging. Journal of Materials Chemistry, 22, 12972-12982.
https://doi.org/10.1039/c2jm30563a
[28]  He, Z.S., Ye, F., Zhang, C.Y., Fan, J.D., Du, Z.Y., Zhao, W.C., Yuan, Q., Niu, W.C., Gao, F.P., He, B., Cao, P., Zhao, L.A., Gao, X.J., Gao, X.F., Sun, B., Dong, Y.H., Zhao, J.C., Qi, J.X., Liang, X.J., Jiang, H.D., Gong, Y., Tan, W.J. and Gao, X.Y. (2022) A Comparison of Remdesivir versus Gold Cluster In COVID-19 Animal Model: A Better Therapeutic Outcome of Gold Cluster. Nano Today, 44, Article ID: 101468.
https://doi.org/10.1016/j.nantod.2022.101468
[29]  Kabsch, W. (2010) XDS. Structural Biology, 66, 125-132.
https://doi.org/10.1107/S0907444909047337
[30]  Narayanan, A., Narwal, M., Majowicz, S.A., Varricchio, C., Toner, S.A., Ballatore, C., Brancale, A., Murakami, K.S. and Jose, J. (2022) Identification of SARS-CoV-2 Inhibitors Targeting Mpro and PLpro Using In-Cell-Protease Assay. Communications Biology, 5, Article No. 169.
https://doi.org/10.1038/s42003-022-03090-9
[31]  McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C. and Read, R.J. (2007) Phaser Crystallographic Software. Journal of Applied Crystallography, 40, 658-674.
https://doi.org/10.1107/S0021889807021206
[32]  Emsley, P. and Cowtan, K. (2004) Coot: Model-Building Tools for Molecular Graphics. Structural Biology, 60, 2126-2132.
https://doi.org/10.1107/S0907444904019158
[33]  Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., McCoy, A.J., Moriarty, N.W., Oeffner, R., Read, R.J., Richardson, D.C., Richardson, J.S., Terwilliger, T.C. and Zwart, P.H. (2010) PHENIX: A Comprehensive Python-Based System for Macromolecular Structure Solution. Acta Crystallogr. Structural Biology, 66, 213-221.
https://doi.org/10.1107/S0907444909052925
[34]  Murshudov, G.N., Skubák, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F. and Vagin, A.A. (2011) REFMAC5 for the Refinement of Macromolecular Crystal Structures. Structural Biology, 67, 355-367.
https://doi.org/10.1107/S0907444911001314
[35]  Jin, Z.M., Du, X.Y., Xu, Y.C., Deng, Y.Q., Liu, M.Q., Zhao, Y., Zhang, B., Li, X.F., Zhang, L.K., Peng, C., Duan, Y.K., Yu, J., Wang, L., Yang, K.L., Liu, F.J., Jiang, R.D., Yang, X.L., You, T., Liu, X.C., Yang, X.N., Bai, F., Liu, H., Liu, X., Guddat, L.W., Xu, W.Q., Xiao, G.F., Qin, C.F., Shi, Z.L., Jiang, H.L., Rao, Z.H. and Yang, H.T. (2020) Structure of Mpro From SARS-CoV-2 and Discovery of Its Inhibitors. Nature, 582, 289-293.
https://doi.org/10.1038/s41586-020-2223-y
[36]  Salinas, G., Gao, W., Wang, Y., Bonilla, M., Yu, L., Novikov, A., Virginio, V.G., Ferreira, H.B., Vieites, M., Gladyshev, V.N., Gambino, D. and Dai, S.D. (2017) The Enzymatic and Structural Basis for Inhibition of Echinococcus Granulosus Thioredoxin Glutathione Reductase by Gold(I). Antioxidants & Redox Signaling, 27, 1491-1504.
https://doi.org/10.1089/ars.2016.6816

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413