全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Decoding Retinoblastoma: Differential Gene Expression

DOI: 10.4236/ijcm.2024.154013, PP. 177-196

Keywords: Retinoblastoma Gene Expression, In Silico Study, Differentially Expressed Genes, Chemoresistance, Immune Response, Computational Biology

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: Retinoblastoma, the most common intraocular pediatric cancer, presents complexities in its genetic landscape that necessitate a deeper understanding for improved therapeutic interventions. This study leverages computational tools to dissect the differential gene expression profiles in retinoblastoma. Methods: Employing an in silico approach, we analyzed gene expression data from public repositories by applying rigorous statistical models, including limma and de seq 2, for identifying differentially expressed genes DEGs. Our findings were validated through cross-referencing with independent datasets and existing literature. We further employed functional annotation and pathway analysis to elucidate the biological significance of these DEGs. Results: Our computational analysis confirmed the dysregulation of key retinoblastoma-associated genes. In comparison to normal retinal tissue, RB1 exhibited a 2.5-fold increase in expression (adjusted p < 0.01), while E2F3 showed a 3-fold upregulation (adjusted p < 0.05). Additionally, novel genes implicated in chemo-resistance, such as ABCB1, were identified with a significant 3.5-fold decrease in expression (adjusted p < 0.001). Furthermore, differential expression of immune response genes was observed, with a subset demonstrating over a 2-fold change (adjusted p < 0.05). These results, validated against independent datasets, yielded a high concordance rate, thereby substantiating the methodological soundness of our study. Conclusions: Our analysis reinforces the critical genetic alterations known in retinoblastoma and unveils new avenues for research into the disease’s molecular basis. The discovery of chemoresistance markers and immune-related genes opens potential pathways for personalized treatment strategies. The study’s outcomes emphasize the power of in silico analyses in unraveling complex cancer genomics.

References

[1]  Ahmad, A., Zhang, Y. and Cao, X.F. (2010) Decoding the Epigenetic Language of Plant Development. Molecular Plant, 3, 719-728.
https://doi.org/10.1093/mp/ssq026
[2]  Balla, M.M., et al. (2019) Gene Expression Analysis of Retinoblastoma Tissues with Clinico-Histopathologic Correlation. Journal of Radiation and Cancer Research, 10, 85-95.
https://doi.org/10.4103/jrcr.jrcr_7_19
[3]  Bao, J., et al. (2012) MicroRNA-449 and MicroRNA-34b/C Function Redundantly in Murine Testes by Targeting E2F Transcription Factor-Retinoblastoma Protein (E2F-PRb) Pathway. Journal of Biological Chemistry, 287, 21686-21698.
https://doi.org/10.1074/jbc.M111.328054
[4]  Benavente, C.A., Finkelstein, D., Johnson, D.A., Marine, J.C., Ashery-Padan, R. and Dyer, M.A. (2014) Chromatin Remodelers HELLS and UHRF1 Mediate the Epigenetic Deregulation of Genes That Drive Retinoblastoma Tumor Progression. Oncotarget, 5, 9594-9608.
https://doi.org/10.18632/oncotarget.2468
[5]  Byroju, V.V., Nadukkandy, A.S., Cordani, M. and Kumar, L.D. (2023) Retinoblastoma: Present Scenario and Future Challenges. Cell Communication and Signaling, 21, Article No. 226.
https://doi.org/10.1186/s12964-023-01223-z
[6]  Cheedipudi, S.M., et al. (2019) Genomic Reorganization of Lamin-Associated Domains in Cardiac Myocytes Is Associated with Differential Gene Expression and DNA Methylation in Human Dilated Cardiomyopathy. Circulation Research, 124, 1198-1213.
https://doi.org/10.1161/CIRCRESAHA.118.314177
[7]  Chen, M., et al. (2022) E2F1/CKS2/PTEN Signaling Axis Regulates Malignant Phenotypes in Pediatric Retinoblastoma. Cell Death & Disease, 13, Article No. 784.
https://doi.org/10.1038/s41419-022-05222-9
[8]  Dimaras, H. and Corson, T.W. (2019) Retinoblastoma, the Visible CNS Tumor: A Review. Journal of Neuroscience Research, 97, 29-44.
https://doi.org/10.1002/jnr.24213
[9]  Das, D., Deka, P., Biswas, J. and Bhattacharjee, H. (2021) Pathology of Retinoblastoma: An Update. In: Nema, H.V. and Nema, N., Eds., Ocular Tumors, Springer, Singapore, 45-59.
https://doi.org/10.1007/978-981-15-8384-1_4
[10]  Divya, G., Madhura, R., Khetan, V., Rishi, P. and Narayanan, J. (2022) Understanding the Mechano and Chemo Response of Retinoblastoma Tumor Cells. OpenNano, 8, Article ID: 100092.
https://doi.org/10.1016/j.onano.2022.100092
[11]  Eloy, P., et al. (2016) A Parent-of-Origin Effect Impacts the Phenotype in Low Penetrance Retinoblastoma Families Segregating the C. 1981C> T/P. Arg661Trp Mutation of RB1. PLOS Genetics, 12, e1005888.
https://doi.org/10.1371/journal.pgen.1005888
[12]  Ely, S., et al. (2005) Mutually Exclusive Cyclin-Dependent Kinase 4/Cyclin D1 and Cyclin-Dependent Kinase 6/Cyclin D2 Pairing Inactivates Retinoblastoma Protein and Promotes Cell Cycle Dysregulation in Multiple Myeloma. Cancer Research, 65, 11345-11353.
https://doi.org/10.1158/0008-5472.CAN-05-2159
[13]  Etcheverry, A., et al. (2010) DNA Methylation in Glioblastoma: Impact on Gene Expression and Clinical Outcome. BMC Genomics, 11, Article No. 701.
https://doi.org/10.1186/1471-2164-11-701
[14]  Germain, N.D., et al. (2014) Gene Expression Analysis of Human Induced Pluripotent Stem Cell-Derived Neurons Carrying Copy Number Variants of Chromosome 15q11-Q13. 1. Molecular Autism, 5, Article No. 44.
https://doi.org/10.1186/2040-2392-5-44
[15]  Graudens, E., et al. (2006) Deciphering Cellular States of Innate Tumor Drug Responses. Genome Biology, 7, Article No. R19.
[16]  Grossniklaus, H.E. (2014) Retinoblastoma. Fifty Years of Progress. The LXXI Edward Jackson Memorial Lecture. American Journal of Ophthalmology, 158, 875-891.E1.
https://doi.org/10.1016/j.ajo.2014.07.025
[17]  Gutzat, R., Borghi, L. and Gruissem, W. (2012) Emerging Roles of RETINOBLASTOMA-RELATED Proteins in Evolution and Plant Development. Trends in Plant Science, 17, 139-148.
https://doi.org/10.1016/j.tplants.2011.12.001
[18]  Iwahori, S., Hakki, M., Chou, S. and Kalejta, R.F. (2015) Molecular Determinants for the Inactivation of the Retinoblastoma Tumor Suppressor by the Viral Cyclin-Dependent Kinase UL97. Journal of Biological Chemistry, 290, 19666-19680.
https://doi.org/10.1074/jbc.M115.660043
[19]  Jansma, A.L., Martinez-Yamout, M.A., Liao, R., Sun, P., Dyson, H.J. and Wright, P.E. (2014) The High-Risk HPV16 E7 Oncoprotein Mediates Interaction between the Transcriptional Coactivator CBP and the Retinoblastoma Protein PRb. Journal of Molecular Biology, 426, 4030-4048.
https://doi.org/10.1016/j.jmb.2014.10.021
[20]  Jin, C., et al. (2013) Deciphering Gene Expression Program of MAP3K1 in Mouse Eyelid Morphogenesis. Developmental Biology, 374, 96-107.
https://doi.org/10.1016/j.ydbio.2012.11.020
[21]  Karmakar, A., Ahamad Khan, M.M., Kumari, N., Devarajan, N. and Ganesan, S.K. (2022) Identification of Epigenetically Modified Hub Genes and Altered Pathways Associated with Retinoblastoma. Frontiers in Cell and Developmental Biology, 10, Article 743224.
https://doi.org/10.3389/fcell.2022.743224
[22]  Zibetti, C. (2022) Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives. Cells, 11, Article 806.
https://doi.org/10.3390/cells11050806
[23]  Van Deusen, H.R. and Kalejta, R.F. (2015) The Retinoblastoma Tumor Suppressor Promotes Efficient Human Cytomegalovirus Lytic Replication. Journal of Virology, 89, 5012-5021.
https://doi.org/10.1128/JVI.00175-15
[24]  Trilling, M., et al. (2013) Deciphering the Modulation of Gene Expression by Type I and II Interferons Combining 4sU-Tagging, Translational Arrest and in Silico Promoter Analysis. Nucleic Acids Research, 41, 8107-8125.
https://doi.org/10.1093/nar/gkt589
[25]  Sradhanjali, S., et al. (2021) The Oncogene MYCN Modulates Glycolytic and Invasive Genes to Enhance Cell Viability and Migration in Human Retinoblastoma. Cancers, 13, Article 5248.
https://doi.org/10.3390/cancers13205248
[26]  Shi, K., Zhu, X., Wu, J., Chen, Y., Zhang, J. and Sun, X. (2021) Centromere Protein E as a Novel Biomarker and Potential Therapeutic Target for Retinoblastoma. Bioengineered, 12, 5950-5970.
https://doi.org/10.1080/21655979.2021.1972080
[27]  Sengupta, S. and Henry, R.W. (2015) Regulation of the Retinoblastoma-E2F Pathway by the Ubiquitin-Proteasome System. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1849, 1289-1297.
https://doi.org/10.1016/j.bbagrm.2015.08.008
[28]  Saengwimol, D., et al. (2020) Silencing of the Long Noncoding RNA MYCNOS1 Suppresses Activity of MYCN-Amplified Retinoblastoma without RB1 Mutation. Investigative Ophthalmology & Visual Science, 61, 8.
https://doi.org/10.1167/iovs.61.14.8
[29]  Rossi, L., et al. (2007) Deciphering the Molecular Machinery of Stem Cells: A Look at the Neoblast Gene Expression Profile. Genome Biology, 8, Article No. R62.
https://doi.org/10.1186/gb-2007-8-4-r62
[30]  Rubin, S.M. (2013) Deciphering the Retinoblastoma Protein Phosphorylation Code. Trends in Biochemical Sciences, 38, 12-19.
https://doi.org/10.1016/j.tibs.2012.10.007
[31]  Patil, N.Y., Tang, H., Rus, I., Zhang, K. and Joshi, A.D. (2022) Decoding Cinnabarinic Acid-Specific Stanniocalcin 2 Induction by Aryl Hydrocarbon Receptor. Molecular Pharmacology, 101, 45-55.
https://doi.org/10.1124/molpharm.121.000376
[32]  Ren, H., Guo, X., Li, F., Xia, Q., Chen, Z. and Xing, Y. (2021) Four Autophagy-Related Long Noncoding RNAs Provide Coexpression and CeRNA Mechanisms in Retinoblastoma through Bioinformatics and Experimental Evidence. ACS Omega, 6, 33976-33984.
https://doi.org/10.1021/acsomega.1c05259
[33]  Roohollahi, K., De Jong, Y., Van Mil, S.E., Fabius, A.W., Moll, A.C. and Dorsman, J.C. (2022) High-Level MYCN-Amplified RB1-Proficient Retinoblastoma Tumors Retain Distinct Molecular Signatures. Ophthalmology Science, 2, Article ID: 100188.
https://doi.org/10.1016/j.xops.2022.100188
[34]  Morin, P. and Storey, K.B. (2009) Mammalian Hibernation: Differential Gene Expression and Novel Application of Epigenetic Controls. The International Journal of Developmental Biology, 53, 433-442.
https://doi.org/10.1387/ijdb.082643pm
[35]  Myers, J.E., et al. (2023) Retinoblastoma Protein Is Required for Epstein-Barr Virus Replication in Differentiated Epithelia. Journal of Virology, 97, E01032-22.
https://doi.org/10.1128/jvi.01032-22
[36]  Manukonda, R., et al. (2022) Comprehensive Analysis of Serum Small Extracellular Vesicles-Derived Coding and Non-Coding RNAs from Retinoblastoma Patients for Identifying Regulatory Interactions. Cancers, 14, Article 4179.
https://doi.org/10.3390/cancers14174179
[37]  Mao, J., et al. (2023) Retinoblastoma Gene Expression Profiling Based on Bioinformatics Analysis. BMC Medical Genomics, 16, Article No. 101.
https://doi.org/10.1186/s12920-023-01537-4
[38]  Miccadei, S., Provenzano, C., Mojzisek, M., Giorgio Natali, P. and Civitareale, D. (2005) Retinoblastoma Protein Acts as Pax 8 Transcriptional Coactivator. Oncogene, 24, 6993-7001.
https://doi.org/10.1038/sj.onc.1208861

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413