全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

瓦斯爆炸冲击作用下巷道壁面损伤破坏评估
Analysis Damage Assessment of Roadway Wall Caused by Gas Explosion Impact

DOI: 10.12677/me.2024.122025, PP. 221-228

Keywords: 瓦斯爆炸,巷道壁面,破坏特征,评估方法,P-I曲线
Gas Explosion
, Roadway Wall, Damage Characteristics, Assessment Method, P-I Curve

Full-Text   Cite this paper   Add to My Lib

Abstract:

矿井瓦斯爆炸会导致巷道产生严重破坏,但是对于瓦斯爆炸冲击荷载对巷道壁面损伤破坏评估研究非常有限。针对现有研究的不足,本文分析了巷道壁面损伤破坏准则并选择了壁面损伤评估方法(支座转角损伤评估法),采取基于支座转角的超压–冲量损伤破坏准则来分析瓦斯爆炸冲击荷载作用下巷道壁面的动态响应数值数据,拟合了瓦斯爆炸冲击荷载作用下巷道壁面P-I曲线,并将P-I空间划分了以支座转角2?,4?,6?和8?为节点为5个区域,这5个区分别为轻度损伤区、中度损伤区、重度损伤区、严重损伤区、坍塌破坏区。研究结果表明,本次建立的P-I曲线以及巷道壁面的损伤破坏等级能够反应巷道壁面的动响应情况和破坏特性,研究结果能为瓦斯爆炸巷道壁面损伤破坏评估提供参考。
Mine gas explosions can cause severe damage to roadways, but the research on damage assessment of roadway walls by gas explosion impact loads is very limited. To address the shortcomings of existing studies, the damage criterion of roadway walls is analyzed and a wall damage assessment method (bearing angle damage assessment method) is selected. The overpressure-impulse damage criterion based on the bearing angle is adopted to analyze the numerical data of the dynamic response of the roadway wall under the impact load of gas explosion. The P-I curve of the roadway wall under the impact load of gas explosion is fitted. And the P-I space is divided into 5 regions with the nodes of bearing angles of 2?, 4?, 6? and 8?. These 5 zones are mild damage zone, moderate damage zone, severe damage zone, serious damage zone, and collapse damage zone. The research results show that the P-I curve and the damage grade of the roadway wall can reflect the dynamic response and damage characteristics of the roadway wall. The results of the study can provide a reference for damage assessment of gas explosions in roadway wall.

References

[1]  叶青, 林柏泉. 受限空间瓦斯爆炸传播特性[M]. 徐州: 中国矿业大学出版社, 2012: 35-46.
[2]  Ye, Q., Wang, G.G.X., Jia, Z.Z. and Zheng, C.S. (2017) Experimental Study on the Influence of Wall Heat Effect on Gas Explosion and Its Propagation. Applied Thermal Engineering, 118, 392-397.
https://doi.org/10.1016/j.applthermaleng.2017.02.084
[3]  Ye, Q., Lin, B.Q., Jian, C.G. and Jia, Z.Z. (2012) Propagation Characteristics of Gas Explosion in Duct with Sharp Change of Cross Sections. Disaster Advance, 15, 999-1003.
[4]  Gao, K., Liu, Z., et al. (2021) Effect of Low Gas Concentration in Underground Return Tunnels on Characteristics of Gas Explosions. Process Safety and Environmental Protection, 152, 679-691.
https://doi.org/10.1016/j.psep.2021.06.045
[5]  Jiang, B.Y., Lin, B.Q., Shi, S.L., et al. (2012) Numerical Simulation on the Influences of Initial Temperature and Initial Pressure on Attenuation Characteristics and Safety Distance of Gas Explosion. Combustion Science and Technology, 184, 135-150.
https://doi.org/10.1080/00102202.2011.622321
[6]  Ye, Q., Jia, Z.Z., Wang, H.Z. and Pi, Y. (2013) Characteristics and Control Technology of Gas Explosion in Gob of Coal Mines. Disaster Advance, 6, 112-118.
[7]  Tian, B. and Soh, K.T. (2004) Load-Impulse Diagrams of Reinforced Concrete Beams Subjected to Concentrated Transient Loading. Protective Technology Center, Pennsylvania State University, Pennsylvania.
[8]  孙建运. 爆炸冲击荷载作用下钢骨混凝土柱性能研究[D]: [博士学位论文]. 上海: 同济大学, 2006.
[9]  李忠献, 师燕超, 史祥生. 爆炸荷载作用下钢筋混凝土板破坏评定方法[J]. 建筑结构学报, 2009, 30(6): 60-66.
[10]  蒋维, 邓建, 李隐. 基于对数正态分布的岩石损伤本构模型研究[J]. 地下空间与工程学报, 2010, 6(6): 1190-1194.
[11]  Mutalib, A.A. and Hao, H. (2011) Development of P-I Diagrams for Columns. International Journal of Impact Engineering, 38, 290-304.
https://doi.org/10.1016/j.ijimpeng.2010.10.029
[12]  吴赛. 爆炸荷载下复式钢管混凝土柱动力响应研究[D]: [硕士学位论文]. 西安: 长安大学, 2012.
[13]  汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究[D]: [博士学位论文]. 长沙: 国防科学技术大学, 2012.
[14]  Ding, Y., et al. (2013) Damage Evaluation of the Steel Tubular Column Subjected to Explosion and Post-Explosion Fire Condition. Engineering Structures, 55, 44-55.
https://doi.org/10.1016/j.engstruct.2012.01.013
[15]  丁阳, 宋晓然, 师燕超. 爆炸荷载作用下基于抗剪承载力的钢柱失效准则[J]. 北京工业大学学报, 2014, 40(8): 1151-1155.
[16]  Dragos, J. and Wu, C.Q. (2014) Single-Degree-of-Freedom Approach to Incorporate Axial Load Effects on Pressure Impulse Curves for Steel Columns. Journal of Engineering Mechanics, 141, Article ID: 04014098.
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000818
[17]  田志敏, 章峻豪, 江世永. 钢板混凝土复合梁在爆炸荷载作用下的损伤评估研究[J]. 振动与冲击, 2016, 35(4): 42-48.
[18]  陈俊杰, 高康华, 孙敖. 爆炸条件下结构超压一冲量曲线简化计算研究[J]. 振动与冲击, 2016, 35(13): 224-232.
https://doi.org/10.13465/j.cnki.jvs.2016.13.036
[19]  陈晔. 爆炸与次生火灾联合作用下钢结构损伤破坏及连续倒塌研究[D]: [博士学位论文]. 天津: 天津大学, 2016.
[20]  Shi, J.H., Zhu, Y., Chen, G.M., Fu, J.M. and Liu, S.J. (2017) Assessment of Blast Resistance Capacities of Corrugated Blast Walls Based on the P-I Model. Vibration and Shock, 36, 188-195.
[21]  闫秋实, 杜修力. 典型地铁车站柱在爆炸荷载作用下损伤评估方法研究[J]. 振动与冲击, 2017, 36(1): 1-7.
[22]  潘建军, 陈万祥, 郭志昆, 周子欣. 基于P-I曲线的火灾后钢管RPC柱抗爆损伤评估方法[J]. 防护工程, 2018, 40(5): 16-26.
[23]  Ye, Q. and Jia, Z.Z. (2014) Effect of the Bifurcating Duct on the Gas Explosion Propagation Characteristics. Combustion, Explosion and Shock Waves, 50, 424-428.
https://doi.org/10.1134/S0010508214040108
[24]  Yang, Z.H., Ye, Q., Jia, Z.Z. and Li, H. (2020) Numerical Simulation of Pipeline-Pavement Damage Caused by Explosion of Leakage Gas in Buried PE Pipelines. Advances in Civil Engineering, 10, Article ID: 4913984.
https://doi.org/10.1155/2020/4913984
[25]  Ye, Q., Jia, Z.Z. and Zheng, C.S. (2017) Study on Hydraulic-Controlled Blasting Technology for Pressure Relief and Permeability Improvement in a Deep Hole. Journal of Petroleum Science and Engineering, 159, 433-442.
https://doi.org/10.1016/j.petrol.2017.09.045
[26]  Dusenberry, D.O. (2010) Handbook for Blast-Resistant Design of Buildings. John Wiley & Sons, Hoboken.
https://doi.org/10.1002/9780470549070
[27]  Jia, Z.Z., Ye, Q. and Li, H. (2023) Damage Assessment of Roadway Wall Caused by Dynamic and Static Load Action of Gas Explosion. Processes, 11, Article No. 580.
https://doi.org/10.3390/pr11020580

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413