|
Mine Engineering 2024
侧泄爆口数量对受限空间内氢气甲烷爆炸特性的影响
|
Abstract:
为了减少受限空间内氢气甲烷爆炸的危害,采用实验的方法在方形管100 mm × 100 mm × 1000 mm中开展爆炸试验,借助高速摄像技术和压力采集技术,研究了侧泄爆口数量对掺氢甲烷爆炸特性影响。结果表明:当第一个泄爆口开设在距离点火源200 mm时,随着泄爆口数量的增加,火焰在传播至第一个泄爆口的速度不受泄爆口数量的影响,火焰经过泄爆口后,火焰结构被破坏失去加速的基础。火焰在两个泄爆口之间时,在流场的作用下会略微加快火焰速度。但增加泄爆口的数量,下游的超压越来越小,但上游超压双口泄爆和三口泄爆的相差不大。
In order to reduce the hazards of hydrogen methane explosion in the confined space, using experimental methods in the square tube 100 mm × 100 mm × 1000 mm to carry out explosion tests, with the help of high-speed camera technology and pressure acquisition technology, the study of the number of side relief ports on the hydrogen-doped methane explosion characteristics. The results show that: when the first vent opened in the distance from the ignition source 200 mm, with the increase in the number of vents, the flame propagation to the first vent speed is not affected by the number of vents, the flame through the vent, the flame structure is destroyed to lose the basis of acceleration. Flame propagation is slightly accelerated by the action of the flow field when the flame is between two vents. However, increase the number of vents, the downstream overpressure is getting smaller, but the upstream overpressure double-ported relief and three-ported relief is not much difference.
[1] | Zhang, S., Ma, H., Huang, X., et al. (2020) Numerical Simulation on Methane-Hydrogen Explosion in Gas Compartment in Utility Tunnel. Process Safety and Environmental Protection, 140, 100-110. https://doi.org/10.1016/j.psep.2020.04.025 |
[2] | 王玮, 王秋岩, 邓海全, 等. 天然气管道输送混氢天然气的可行性[J]. 天然气工业, 2020, 40(3): 130-136. |
[3] | 郑凯. 管道中氢气/甲烷混合燃料爆燃预混火焰传播特征研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2017. |
[4] | Tran, M.-V., Scribano, G., Chong, C.T., et al. (2018) Simulation of Explosion Characteristics of Syngas/Air Mixtures. Energy Procedia, 153, 131-136. https://doi.org/10.1016/j.egypro.2018.10.024 |
[5] | 余明高, 阳旭峰, 郑凯, 等. 障碍物对甲烷/氢气爆炸特性的影响[J]. 爆炸与冲击, 2018, 38(1): 19-27. |
[6] | Xing, H., Xu, Q., Song, X., et al. (2020) The Effects of Vent Area and Ignition Position on Pressure Oscillations in a Large L/D Ratio Duct. Process Safety and Environmental Protection, 135, 166-170. https://doi.org/10.1016/j.psep.2019.12.030 |
[7] | 王金贵, 胡超, 罗飞云, 等. 泄爆面积对甲烷-空气预混泄爆容器结构响应影响的实验研究[J]. 爆炸与冲击, 2022, 42(4): 139-150. |
[8] | Yu, M., Wan, S., Zheng, K., et al. (2018) Effect of Side Venting Areas on the Methane/Air Explosion Characteristics in a Pipeline. Journal of Loss Prevention in the Process Industries, 54, 123-130. https://doi.org/10.1016/j.jlp.2018.03.010 |
[9] | Ajrash, M.J., Zanganeh, J. and Moghtaderi, B. (2018) Flame Deflagration in Side-on Vented Detonation Tubes: A Large Scale Study. Journal of Hazardous Materials, 345, 38-47. https://doi.org/10.1016/j.jhazmat.2017.11.014 |
[10] | Pan, C., Li, G. and Wang, X. (2020) Effects of Top Vent Locations and Gasoline Volumes on Vented Gasoline Vapor Explosion in Closed Small-Scale Vessel. Fuel, 277, Article ID: 118226. https://doi.org/10.1016/j.fuel.2020.118226 |
[11] | Bychkov, V., Akkerman, V., Fru, G., et al. (2007) Flame Acceleration in the Early Stages of Burning in Tubes. Combustion and Flame, 150, 263-276. https://doi.org/10.1016/j.combustflame.2007.01.004 |
[12] | 胡俊, 万士昕, 浦以康, 等. 柱形容器开口泄爆过程中的火焰传播特性[J]. 爆炸与冲击, 2004, 24(4): 330-336. |