全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

前方垂直障碍物下水平喷射火特性研究
Research on Horizontal Fire Jet Characteristics under Vertical Obstacles Ahead

DOI: 10.12677/me.2024.122027, PP. 237-244

Keywords: 燃气喷射火,热辐射,甲烷浓度,孔–板间距,数值模拟
Gas Jet Fires
, Thermal Radiation, Methane Concentration, Hole-Plate Spacing, Numerical Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

燃气泄漏喷射火受到多种因素影响,其中前方垂直障碍物的限制和泄漏气体的流速会对喷射火的破坏半径及破坏程度产生影响。本文通过数值模拟不同情况下的燃气泄漏喷射火,研究受前方垂直障碍物限制下的火焰热辐射损失与甲烷浓度分布。结果表明,随着孔–板间距的增加,墙面的热辐射损失和分布范围逐渐变小,但泄漏孔与障碍物表面之间的热辐射损失分布增加,随着燃气泄漏速率增加,墙面热辐射损失增大;前方障碍物墙面上,孔–板间距与甲烷浓度及分布范围成反比,但气体泄漏速率与甲烷浓度和分布范围成正比。
The leakage and jetting of gas fires are influenced by various factors, among which the restriction of vertical obstacles ahead and the flow rate of leaking gas will affect the radius and extent of fire jetting. In this paper, numerical simulations of gas leakage jetting fires under different conditions are conducted to study the flame thermal radiation loss and methane concentration distribution under the restriction of vertical obstacles ahead. The results indicate that with the increase of hole-plate spacing, the thermal radiation loss and distribution range on the wall gradually decreased, but the thermal radiation loss distribution between the leaking hole and the obstacle surface increases. With the increase of gas leakage rate, the wall thermal radiation loss increases. On the wall of the forward obstacle, the hole-plate spacing is inversely proportional to the methane concentration and distribution range, but the gas leakage rate is directly proportional to the methane concentration and distribution range.

References

[1]  Wang, Z.H., Zhou, K.B., Zhang, L., et al. (2021) Flame Extension Area and Temperature Profile of Horizontal Jet Fire Impinging on a Vertical Plate. Process Safety and Environmental Protection, 147, 547-558.
[2]  Wang, C., Wen, J., Chen, Z., et al. (2014) Predicting Radiative Characteristics of Hydrogen and Hydrogen/Methane Jet Fires Using FireFOAM. International Journal of Hydrogen Energy, 39, 20560-20569.
https://doi.org/10.1016/j.ijhydene.2014.04.062
[3]  Xiao, J., Kuznetsov, M. and Travis, R.J. (2018) Experimental and Numerical Investigations of Hydrogen Jet Fire in a Vented Compartment. International Journal of Hydrogen Energy, 43, 10167-10184.
https://doi.org/10.1016/j.ijhydene.2018.03.178
[4]  Zheng, W., Mahgerefteh, H., et al. (2016) Integral Multiphase Turbulence Compressible Jet Expansion Model for Accidental Releases from Pressurized Containments. Industrial Engineering Chemistry Research, 55, 7558-7568.
https://doi.org/10.1021/acs.iecr.6b01546
[5]  Gómez-Mares, M., Mu?oz, M. and Casal, J. (2009) Axial Temperature Distribution in Vertical Jet Fires. Journal of Hazardous Materials, 172, 54-60.
https://doi.org/10.1016/j.jhazmat.2009.06.136
[6]  Hu, L., Wang, Q., Tang, F., et al. (2013) Axial Temperature Profile in Vertical Buoyant Turbulent Jet Fire in a Reduced Pressure Atmosphere. Fuel, 106, 779-786.
https://doi.org/10.1016/j.fuel.2012.10.051
[7]  Gopalaswami, N., Liu, Y., Laboureur, M.D., et al. (2016) Experimental Study on Propane Jet Fire Hazards: Comparison of Main Geometrical Features with Empirical Models. Journal of Loss Prevention in the Process Industries, 41, 365-375.
https://doi.org/10.1016/j.jlp.2016.02.003
[8]  Laboureur, M.D., Gopalaswami, N., Zhang, B., et al. (2016) Experimental Study on Propane Jet Fire Hazards: Assessment of the Main Geometrical Features of Horizontal Jet Flames. Journal of Loss Prevention in the Process Industries, 41, 355-364.
https://doi.org/10.1016/j.jlp.2016.02.013
[9]  Zhang, X., Hu, L., Zhang, X., et al. (2017) Flame Projection Distance of Horizontally Oriented Buoyant Turbulent Rectangular Jet Fires. Combustion and Flame, 176, 370-376.
https://doi.org/10.1016/j.combustflame.2016.10.016
[10]  Imamura, T., Hamada, S., Mogi, T., et al. (2008) Experimental Investigation on the Thermal Properties of Hydrogen Jet Flame and Hot Currents in the Downstream Region. International Journal of Hydrogen Energy, 33, 3426-3435.
https://doi.org/10.1016/j.ijhydene.2008.03.063
[11]  Zhou, K., Liu, J. and Jiang, J. (2016) Prediction of Radiant Heat Flux from Horizontal Propane Jet Fire. Applied Thermal Engineering, 106, 634-639.
https://doi.org/10.1016/j.applthermaleng.2016.06.063
[12]  Brennan, S., Makarov, D. and Molkov, V. (2008) LES of High Pressure Hydrogen Jet Fire. Journal of Loss Prevention in the Process Industries, 22, 353-359.
https://doi.org/10.1016/j.jlp.2008.12.007
[13]  Houf, W., Schefer, R., Evans, G., et al. (2010) Evaluation of Barrier Walls for Mitigation of Unintended Releases of Hydrogen. International Journal of Hydrogen Energy, 35, 4758-4775.
https://doi.org/10.1016/j.ijhydene.2010.02.086
[14]  Houf, W., Schefer, R., Evans, G., et al. (2011) A Study of Barrier Walls for Mitigation of Unintended Releases of Hydrogen. International Journal of Hydrogen Energy, 36, 2520-2529.
https://doi.org/10.1016/j.ijhydene.2010.04.003
[15]  Schefer, W.R., Groethe, M., Houf, G.W., et al. (2008) Experimental Evaluation of Barrier Walls for Risk Reduction of Unintended Hydrogen Releases. International Journal of Hydrogen Energy, 34, 1590-1606.
https://doi.org/10.1016/j.ijhydene.2008.11.044
[16]  Tao, C.F., Shen, Y., et al. (2016) An Experimental Study of Flame Height and Air Entrainment of Buoyancy-Controlled Jet Flames with Sidewalls. Fuel, 183, 164-169.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413