全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

侧壁套管泄爆作用下瓦斯爆炸特性研究
Study on Gas Explosion Characteristics under the Action of Side Casing Explosion Venting

DOI: 10.12677/me.2024.122029, PP. 263-269

Keywords: 煤矿,套管,瓦斯爆炸,泄爆
Colliery
, Casing, Gas Explosion, Explosion Venting

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探究出一种新型高效的煤矿瓦斯爆炸应对方法,基于自主搭建的爆炸实验平台,爆炸管道侧壁设有套管泄爆腔体,通过设置不同泄爆口间距,研究甲烷爆炸的火焰形态、火焰传播速度及爆炸超压等爆炸特性。研究结果表明,套管泄爆作用下,爆炸火焰传播速度被显著控制。瓦斯爆炸最大火焰传播速度从无侧壁的27.13 m/s,降低到了18.81 m/s和14.52 m/s,最大衰减率为47.33%。同时,在侧壁套管泄爆作用下,无论是管道上游和管道下游的爆炸超压峰值相比于无侧壁泄爆都有所减小,其中最大衰减率可达35.5%。研究结果可为煤矿瓦斯爆炸的预防和控制提供理论基础,促进煤矿安全技术的发展和创新。
In order to explore a new and efficient coal mine gas explosion response method, based on the explosion experiment platform built by ourselves, the side wall of the explosion pipeline is equipped with a sleeve blasting chamber. By setting different blasting outlet spacing, the explosion characteristics of methane explosions such as flame form, flame propagation speed, and explosion over-pressure are studied. The results show that the flame propagation speed is controlled significantly under the action of casing blasting. The maximum flame propagation velocity of gas explosion decreases from 27.13 m/s without a side wall to 18.81 m/s and 14.52 m/s, and the maximum attenuation rate is 47.33%. At the same time, under the action of sidewall casing blasting, the peak value of explosion overpressure of both upstream and downstream pipelines decreases compared with that without sidewall blasting, and the maximum attenuation rate can reach 35.5%. The research results can provide a theoretical basis for the prevention and control of coal mine gas explosions, and promote the development and innovation of coal mine safety technology.

References

[1]  张迎新, 王佳伟, 唐露. 复杂管网中支路增设通风设施对瓦斯爆炸超压传播的影响[J]. 黑龙江科技大学学报, 2023, 33(5): 649-654.
[2]  胡洋, 吴秋遐, 庞磊, 等. 惰性气体抑制瓦斯爆燃火焰传播特性实验研究[J]. 中国安全生产科学技术, 2021, 17(11): 72-78.
[3]  李成兵. N2/CO2/H2O抑制甲烷爆炸化学动力学机理分析[J]. 中国安全科学学报, 2010, 20(8): 88-92.
[4]  程方明, 南凡, 肖旸, 等. CF3I和CO2抑制甲烷——空气爆炸实验研究[J]. 爆炸与冲击, 2022, 42(6): 158-166.
[5]  常新明, 张红军, 魏垂胜, 等. 细水雾粒径对管内瓦斯爆炸特性的影响机理研究[J]. 河南理工大学学报(自然科学版), 2021, 40(5): 8-15.
[6]  纪文涛, 张国涛, 杨帅帅, 等. 惰性粉体抑制瓦斯/煤尘复合爆炸特性及机理研究 [J/OL]. 煤炭科学技术, 1-10.
http://kns.cnki.net/kcms/detail/11.2402.td.20231130.1614.003.html, 2024-03-24.
[7]  贾进章, 张先如, 王枫潇. NH4H2PO4-KHCO3混合粉体对管网甲烷爆炸的抑制特性[J]. 爆破器材, 2024, 53(1): 43-50.
[8]  王亚磊, 郑立刚, 于水军, 等. NaHCO3分散状况对其抑制甲烷爆炸的影响研究[J]. 中国安全科学学报, 2018, 28(11): 80-85.
[9]  陈鹏, 黄福军, 何昕, 等. 多孔材料对管道内甲烷——空气预混火焰传播的影响[J]. 工业安全与环保, 2016, 42(1): 49-52.
[10]  魏春荣, 徐敏强, 王树桐, 等. 多孔材料抑制瓦斯爆炸火焰波的实验研究[J]. 中国矿业大学学报, 2013, 42(2): 206-213.
[11]  余明高, 陈传东, 王雪燕, 等. 管道内瓦斯非均匀预混火焰传播特性实验研究[J]. 煤炭学报, 2021, 46(6): 1781-1790.
[12]  余明高, 郑凯, 郑立刚, 等. 基于Matlab图像处理的瓦斯爆炸火焰传播速度研究[J]. 安全与环境学报, 2014, 14(1): 6-9.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413