|
Mine Engineering 2024
主线坡度对分岔隧道火灾烟气蔓延的影响
|
Abstract:
为探明主线坡度对分岔隧道内的烟气蔓延规律的影响,采用FDS模拟主线正负坡度变化分岔隧道内的火灾烟气蔓延行为,考虑主线坡度为?7?、?5?、?3?、0?、3?、5?、7?,火源功率为5 MW、10 MW和20 MW,揭示主线坡度影响分岔隧道内烟气蔓延的作用机制。研究得出,分岔隧道主线坡度为正坡度时,隧道内形成正烟囱效应,随着坡度增加,上游和匝道烟气回流长度变短,在坡度为7?时上游隧道内无烟气流出,坡度越大越有利于隧道内排烟;分岔隧道主线坡度为负坡度时,隧道内形成负烟囱效应,隧道下游烟气回流长度变长,坡度越大越不利于隧道排烟。
In order to explore the influence of the slope of the main line on the smoke spreading pattern in bifurcated tunnels, FDS was used to simulate the fire smoke spreading behavior in bifurcated tunnels with positive and negative slope changes of the main line, considering that the main line slopes were ?7? and ?5?, ?3?, 0?, 3?, 5?, 7?, and the fire source power is 5 MW, 10 MW and 20 MW, revealing the mechanism by which the slope of the main line affects the spread of smoke in bifurcated tunnels. The study shows that when the slope of the main line of the bifurcated tunnel is a positive slope, a positive chimney effect is formed in the tunnel. As the slope increases, the length of the smoke backflow in the upstream and ramps becomes shorter. When the slope is 7?, there is no smoke flowing out of the upstream tunnel. The greater the slope, the more conducive to smoke exhaust in the tunnel; When the slope of the main line of the bifurcated tunnel is a negative slope, a negative chimney effect is formed in the tunnel, and the smoke return length downstream of the tunnel becomes longer. The greater the slope, the less conducive to tunnel smoke exhaust.
[1] | 殷缶, 梅深. 交通运输部发布《2021年交通运输行业发展统计公报》[J]. 水道港口, 2022, 43(3): 346. |
[2] | 姚勇征, 宋恪斌, 史聪灵, 等. 纵向通风下T型分岔隧道火灾烟气蔓延特性[J]. 中国安全科学学报, 2022, 32(10): 115-120. |
[3] | 李智胜, 蒋浩锴, 高云骥, 等. 分岔隧道火灾烟气流动特性研究[J]. 中国安全生产科学技术, 2021, 17(5): 118-122. |
[4] | 宋英华, 夏小雨, 雷鹏, 等. 纵向通风下卜型分岔隧道火灾烟气流动特性的数值模拟分析[J]. 中国安全生产科学技术, 2023, 19(12): 46-51. |
[5] | 胡孙琪, 陈卫平, 陈屹东, 等. 含渐缩段卜形分岔合流隧道火灾临界风速研究[J]. 消防科学与技术, 2022, 41(8): 1041-1045. |
[6] | 姜学鹏, 何超, 郭辉. Y型合流分岔隧道临界风速计算模型[J]. 安全与环境学报, 2019, 19(1): 210-216. |
[7] | 雷鹏, 陈长坤, 赵冬月. 纵向通风下分岔隧道火灾烟气蔓延特性及控制实验研究[J]. 铁道科学与工程学报, 2022, 19(7): 2117-2124. |
[8] | Jiao, W.B., Chen, C.K., Lei, P., et al. (2024) Experimental Study on the Effects of Branch Tunnel Ventilation on the Smoke Movement and Temperature Characteristics in Bifurcated Tunnel Fires. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 144, Article ?D: 105529. https://doi.org/10.1016/j.tust.2023.105529 |
[9] | Mcgrattan, K., Hostikka, S., Mcdermott, R., et al. (2019) Fire Dynamics Simulator Technical Reference Guide. National Institute of Standards and Technology, Gaithersburg. |
[10] | Yao, Y.Z., Li, Y.Z., Ingason, H., et al. (2019) Numerical Study on Overall Smoke Control Using Naturally Ventilated Shafts during Fires in a Road Tunnel. International Journal of Thermal Sciences, 140, 491-504. https://doi.org/10.1016/j.ijthermalsci.2019.03.016 |
[11] | 黄有波. 城市地下分岔隧道火灾烟气蔓延特性与烟气控制研究[D]: [硕士学位论文]. 北京: 北京工业大学, 2020. |