全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

受限空间侧向双口泄爆对甲烷爆炸特性的影响研究
Study on the Impact of Lateral Dual-Venting on Methane Explosion Characteristics in Confined Spaces

DOI: 10.12677/me.2024.122033, PP. 287-298

Keywords: 受限空间,甲烷/空气预混气体,侧向双口泄爆,泄爆面积,泄爆位置,爆炸特性
Confined Space
, Methane/Air Mixtures, Lateral Dual-Venting, Vent Area, Vent Position, Explosion Characteristic

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了减小受限空间燃气泄漏爆炸带来的风险和损失,利用自主搭建的小尺寸实验平台,研究泄爆面积及位置对甲烷爆炸特性的影响。结果表明:火焰锋面到达舱室末端的时间随着泄爆口与点火源之间距离的增加而缩短;当泄爆口开设在舱室上游1、2位置时,随着泄爆口面积的增大,火焰锋面到达舱室末端的时间缩短,火焰传播速度降低至10.59 m/s,空间内最大爆炸压力持续升高,且超压峰值最小值出现在泄爆口尺寸40 mm × 40 mm处,为8.92 kPa;当泄爆口开设在舱室下游3、4位置时,随着泄爆口面积的增大,火焰锋面到达舱室末端的时间延长,最大火焰传播速度可达到24.39 m/s,空间内最大爆炸压力先降低后升高,且超压峰值最小值上升至12.6 kPa,出现在泄爆口尺寸60 mm × 60 mm处。若对受限空间侧壁采用双口泄爆,增加泄爆面积并不能使受限空间内的最大爆炸压力降低;泄爆位置距离点火源越近,泄爆效果越好。
To reduce the risks and losses caused by gas leaks and explosions in confined spaces, a small-scale experimental platform was independently constructed to study the effects of the venting area and position on the characteristics of methane explosions. The results show that the time it takes for the flame front to reach the end of the compartment decreases as the distance between the vent and the ignition source increases. When the vent is positioned in positions 1 and 2 upstream of the compartment, as the vent area increases, the time it takes for the flame front to reach the end of the compartment shortens, the flame propagation speed decreases to 10.59 m/s, and the maximum explosion pressure in the space continues to rise. The minimum peak overpressure occurs at a vent size of 40 mm × 40 mm, which is 8.92 kPa. When the vent is positioned in positions 3 and 4 downstream of the compartment, as the vent area increases, the time it takes for the flame front to reach the end of the compartment lengthens, the maximum flame propagation speed can reach 24.39 m/s, and the maximum explosion pressure in the space first decreases then increases, with the minimum peak overpressure rising to 12.6 kPa at a vent size of 60 mm × 60 mm. If dual-venting is used on the side walls of the confined space, increasing the venting area does not reduce the maximum explosion pressure inside the confined space; the closer the vent position is to the ignition source, the better the venting effect.

References

[1]  金友平, 帅健, 王文想, 等. 基于重大事故场景的受限空间内燃气泄漏情景模拟及泄爆优化研究[J]. 高压物理学报, 2023, 37(6): 164-180.
[2]  万少杰. 侧向泄爆对管道内甲烷爆炸特性影响规律研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2019.
[3]  李昂, 司俊鸿, 彭瑞, 等. 泄爆面积比对泄爆门封闭泄爆特性的影响研究[J]. 中国安全生产科学技术, 2021, 17(9): 84-89.
[4]  任少峰, 陈先锋, 王玉杰, 等. 无约束泄爆对甲烷/空气火焰传播特性影响的试验研究[J]. 中国安全科学学报, 2013, 23(4): 84-88.
[5]  Tang, Z., Li, J., Guo, J., et al. (2020) Effect of Vent Size on Explosion Overpressure and Flame Behavior during Vented Hydrogen-Air Mixture Deflagrations. Nuclear Engineering and Design, 361, Article ID: 110578.
https://doi.org/10.1016/j.nucengdes.2020.110578
[6]  马秋菊, 邵俊程, 万孟赛, 等. 点火位置对容器外部二次爆炸影响研究[J]. 中国安全科学学报, 2021, 31(9): 90-98.
[7]  陈明仙, 郭进, 罗飞云, 等. 点火位置对甲烷-空气预混泄爆容器结构响应影响研究[J]. 西安科技大学学报, 2021, 41(5): 800-807.
[8]  Guo, J., Sun, X., Rui, S., et al. (2015) Effect of Ignition Position on Vented Hydrogen-Air Explosions. International Journal of Hydrogen Energy, 40, 15780-15788.
https://doi.org/10.1016/j.ijhydene.2015.09.038
[9]  Chao, J., Bauwens, C.R. and Dorofeev, S.B. (2011) An Analysis of Peak Overpressures in Vented Gaseous Explosions. Proceedings of the Combustion Institute, 33, 2367-2374.
https://doi.org/10.1016/j.proci.2010.06.144
[10]  Kasmani, R.M., Andrews, G.E. and Phylaktou, H.N. (2013) Experimental Study on Vented Gas Explosion in a Cylindrical Vessel with a Vent Duct. Process Safety and Environmental Protection, 91, 245-252.
https://doi.org/10.1016/j.psep.2012.05.006
[11]  Bauwens, C.R., Chaffee, J. and Dorofeev, S. (2010) Effect of Ignition Location, Vent Size, and Obstacles on Vented Explosion Overpressures in Propane-Air Mixtures. Combustion Science and Technology, 182, 1915-1932.
https://doi.org/10.1080/00102202.2010.497415
[12]  Pan, C., Li, G. and Wang, X. (2020) Effects of Top Vent Locations and Gasoline Volumes on Vented Gasoline Vapor Explosion in Closed Small-Scale Vessel. Fuel, 277, Article ID: 118226.
https://doi.org/10.1016/j.fuel.2020.118226
[13]  Clanet, C. and Searby, G. (1996) On the “Tulip Flame” Phenomenon. Combustion and Flame, 105, 226-238.
https://doi.org/10.1016/0010-2180(95)00195-6
[14]  Xiao, H.H., Makarov, D., Sun, J.H., et al. (2012) Experimental and Numerical Investigation of Premixed Flame Propagation with Distorted Tulip Shape in a Closed Duct. Combustion and Flame, 159, 1523-1538.
https://doi.org/10.1016/j.combustflame.2011.12.003
[15]  Xiao, H.H., Wang, Q.S., Shen, X.B., et al. (2013) An Experimental Study of Distorted Tulip Flame Formation in a Closed Duct. Combustion and Flame, 160, 1725-1728.
https://doi.org/10.1016/j.combustflame.2013.03.011

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413