全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Animal Model of Aortic Valve Calcification: Their Methodology Helps Us Understand Aortic Valve Calcification

DOI: 10.4236/abb.2024.154016, PP. 235-268

Keywords: Animal Model, Aortic Valve Stenosis, Calcification, Cardiovascular

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aortic valve calcification disease (CAVD) is the most prevalent degenerative valve disease in humans, leading to significant morbidity and mortality. Despite its common occurrence, our understanding of the underlying mechanisms remains incomplete, and available treatment options are limited and risky. A more comprehensive understanding of the biology of CAVD is essential to identify new therapeutic strategies. Animal models have played a crucial role in advancing our knowledge of CAVD and exploring potential treatments. However, these models have inherent limitations as they cannot fully replicate the complex physiological mechanisms of human CAVD. In this review, we examine various CAVD models ranging from pigs to mice, highlighting the unique characteristics of each model to enhance our understanding of CAVD. While these models offer valuable insights, they also have limitations and shortcomings. We propose that the guide wire model shows promise for future CAVD research, and streamlining the methodology could enhance our understanding and expand the research scope in this field.

References

[1]  Yadgir, S., Johnson, C.O., Aboyans, V., Adebayo, O.M., Adedoyin, R.A., Afarideh, M., Alahdab, F., Alashi, A., Alipour, V., Arabloo, J., et al. (2020) Global, Regional, and National Burden of Calcific Aortic Valve and Degenerative Mitral Valve Diseases, 1990-2017. Circulation, 141, 1670-1680.
https://doi.org/10.1161/CIR.0000000000000848
[2]  Roth, G.A., Mensah, G.A., Johnson, C.O., Addolorato, G., Ammirati, E., Baddour, L.M., Barengo, N.C., Beaton, A.Z., Benjamin, E.J., Benziger, C.P., et al. (2020) Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. Journal of the American College of Cardiology, 76, 2982-3021.
[3]  Coffey, S., Roberts-Thomson, R., Brown, A., Carapetis, J., Chen, M., Enriquez-Sarano, M., Zühlke, L. and Prendergast, B.D. (2021) Global Epidemiology of Valvular Heart Disease. Nature Reviews Cardiology, 18, 853-864.
https://doi.org/10.1038/s41569-021-00570-z
[4]  Hu, J., Lei, H., Liu, L. and Xu, D. (2022) Lipoprotein(a), a Lethal Player in Calcific Aortic Valve Disease. Frontiers in Cell and Developmental Biology, 10, Article 812368.
https://doi.org/10.3389/fcell.2022.81236
[5]  New, S.E. and Aikawa, E. (2011) Molecular Imaging Insights into Early Inflammatory Stages of Arterial and Aortic Valve Calcification. Circulation Research, 108, 1381-1391.
https://doi.org/10.1161/CIRCRESAHA.110.234146
[6]  Shekar, C. and Budoff, M. (2018) Calcification of the Heart: Mechanisms and Therapeutic Avenues. Expert Review of Cardiovascular Therapy, 16, 527-536.
https://doi.org/10.1080/14779072.2018.1484282
[7]  Zhao, Y., Nicoll, R., He, Y.H. and Henein, M.Y. (2016) The Effect of Statins on Valve Function and Calcification in Aortic Stenosis: A Meta-Analysis. Atherosclerosis, 246, 318-324.
https://doi.org/10.1016/j.atherosclerosis.2016.01.023
[8]  Das, R. and Puri, R. (2018) Transcatheter Treatment of Bicuspid Aortic Valve Disease: Imaging and Interventional Considerations. Frontiers in Cardiovascular Medicine, 5, Article No. 91.
https://doi.org/10.3389/fcvm.2018.00091
[9]  Smith, C.R., Leon, M.B., Mack, M.J., Miller, D.C., Moses, J.W., Svensson, L.G., Tuzcu, E.M., Webb, J.G., Fontana, G.P., Makkar, R.R., et al. (2011) Transcatheter versus Surgical Aortic-Valve Replacement in High-Risk Patients. The New England Journal of Medicine, 364, 2187-2198.
https://doi.org/10.1056/NEJMoa1103510
[10]  Zhang, B., Salaun, E., Côté, N., Wu, Y., Mahjoub, H., Mathieu, P., Dahou, A., Zenses, A.S., Clisson, M., Pibarot, P., et al. (2020) Association of Bioprosthetic Aortic Valve Leaflet Calcification on Hemodynamic and Clinical Outcomes. Journal of the American College of Cardiology, 76, 1737-1748.
https://doi.org/10.1016/j.jacc.2020.08.034
[11]  Claessen, B.E., Tang, G.H.L., Kini, A.S. and Sharma, S.K. (2021) Considerations for Optimal Device Selection in Transcatheter Aortic Valve Replacement: A Review. JAMA Cardiology, 6, 102-112.
https://doi.org/10.1001/jamacardio.2020.3682
[12]  Zheng, K.H., Tsimikas, S., Pawade, T., Kroon, J., Jenkins, W.S.A., Doris, M.K., White, A.C., Timmers, N., Hjortnaes, J., Rogers, M.A., et al. (2019) Lipoprotein(A) and Oxidized Phospholipids Promote Valve Calcification in Patients with Aortic Stenosis. Journal of the American College of Cardiology, 73, 2150-2162.
https://doi.org/10.1016/j.jacc.2019.01.070
[13]  Goody, P.R., Hosen, M.R., Christmann, D., Niepmann, S.T., Zietzer, A., Adam, M., Bönner, F., Zimmer, S., Nickenig, G. and Jansen, F. (2020) Aortic Valve Stenosis: from Basic Mechanisms to Novel Therapeutic Targets. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 885-900.
https://doi.org/10.1161/ATVBAHA.119.313067
[14]  O’Brien, K.D. (2006) Pathogenesis of Calcific Aortic Valve Disease: A Disease Process Comes of Age (and a Good Deal More). Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1721-1728.
https://doi.org/10.1161/01.ATV.0000227513.13697.ac
[15]  Peeters, F., Meex, S.J.R., Dweck, M.R., Aikawa, E., Crijns, H., Schurgers, L.J. and Kietselaer, B. (2018) Calcific Aortic Valve Stenosis: Hard Disease in the Heart: A Biomolecular Approach Towards Diagnosis and Treatment. European Heart Journal, 39, 2618-2624.
https://doi.org/10.1093/eurheartj/ehx653
[16]  Patel, S.M., Braunwald, E., Steffel, J., Boriani, G., Palazzolo, M.G., Antman, E.M., Bohula, E.A., Carnicelli, A.P., Connolly, S.J., Eikelboom, J.W., et al. (2024) Efficacy and Safety of Non-Vitamin-K Antagonist Oral Anticoagulants versus Warfarin across the Spectrum of Body Mass Index and Body Weight: An Individual Patient Data Meta-Analysis of 4 Randomized Clinical Trials of Patients with Atrial Fibrillation. Circulation, 149, 932-943.
https://doi.org/10.1161/CIRCULATIONAHA.123.066279
[17]  Guerraty, M.A., Grant, G.R., Karanian, J.W., Chiesa, O.A., Pritchard, W.F. and Davies, P.F. (2010) Hypercholesterolemia Induces Side-Specific Phenotypic Changes and Peroxisome Proliferator-Activated Receptor-Gamma Pathway Activation in Swine Aortic Valve Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 225-231.
https://doi.org/10.1161/ATVBAHA.109.198549
[18]  Duan, S.Z., Usher, M.G. and Mortensen, R.M. (2008) Peroxisome Proliferator-Activated Receptor-Gamma-Mediated Effects in the Vasculature. Circulation Research, 102, 283-294.
https://doi.org/10.1161/CIRCRESAHA.107.164384
[19]  Chu, Y., Lund, D.D., Weiss, R.M., Brooks, R.M., Doshi, H., Hajj, G.P., Sigmund, C.D. and Heistad, D.D. (2013) Pioglitazone Attenuates Valvular Calcification Induced by Hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 523-532.
https://doi.org/10.1161/ATVBAHA.112.300794
[20]  Kawaguchi, H., Miyoshi, N., Miura, N., Fujiki, M., Horiuchi, M., Izumi, Y., Miyajima, H., Nagata, R., Misumi, K., Takeuchi, T., et al. (2011) Microminipig, a Non-Rodent Experimental Animal Optimized for Life Science Research: Novel Atherosclerosis Model Induced by High Fat and Cholesterol Diet. Journal of Pharmacological Sciences, 115, 115-121.
https://doi.org/10.1254/jphs.10R17FM
[21]  Zhao, Y., Xiang, L., Liu, Y., Niu, M., Yuan, J. and Chen, H. (2018) Atherosclerosis Induced by a High-Cholesterol and High-Fat Diet in the Inbred Strain of the Wuzhishan Miniature Pig. Animal Biotechnology, 29, 110-118.
https://doi.org/10.1080/10495398.2017.1322974
[22]  Rapacz, J., Hasler-Rapacz, J., Taylor, K.M., Checovich, W.J. and Attie, A.D. (1986) Lipoprotein Mutations in Pigs Are Associated with Elevated Plasma Cholesterol and Atherosclerosis. Science (New York, NY), 234, 1573-1577.
https://doi.org/10.1126/science.3787263
[23]  Song, J., Wang, G., Hoenerhoff, M.J., Ruan, J., Yang, D., Zhang, J., Yang, J., Lester, P.A., Sigler, R., Bradley, M., et al. (2018) Bacterial and Pneumocystis Infections in the Lungs of Gene-Knockout Rabbits with Severe Combined Immunodeficiency. Frontiers in Immunology, 9, Article No. 429.
https://doi.org/10.3389/fimmu.2018.00429
[24]  Fan, J., Chen, Y., Yan, H., Niimi, M., Wang, Y. and Liang, J. (2018) Principles and Applications of Rabbit Models for Atherosclerosis Research. Journal of Atherosclerosis and Thrombosis, 25, 213-220.
https://doi.org/10.5551/jat.RV17018
[25]  Wang, W., Chen, Y., Bai, L., Zhao, S., Wang, R., Liu, B., Zhang, Y., Fan, J. and Liu, E. (2018) Transcriptomic Analysis of the Liver of Cholesterol-Fed Rabbits Reveals Altered Hepatic Lipid Metabolism and Inflammatory Response. Scientific Reports, 8, Article No. 6437.
https://doi.org/10.1038/s41598-018-24813-1
[26]  Hur, S.J., Nam, K.C., Min, B., Du, M., Seo, K.I. and Ahn, D.U. (2014) Effects of Dietary Cholesterol and Its Oxidation Products on Pathological Lesions and Cholesterol and Lipid Oxidation in the Rabbit Liver. BioMed Research International, 2014, Article ID: 598612.
https://doi.org/10.1155/2014/598612
[27]  Grübler, M.R., März, W., Pilz, S., Grammer, T.B., Trummer, C., Müllner, C., Schwetz, V., Pandis, M., Verheyen, N., Tomaschitz, A., et al. (2017) Vitamin-D Concentrations, Cardiovascular Risk and Events—A Review of Epidemiological Evidence. Reviews in Endocrine & Metabolic Disorders, 18, 259-272.
https://doi.org/10.1007/s11154-017-9417-0
[28]  Cui, L., Rashdan, N.A., Zhu, D., Milne, E.M., Ajuh, P., Milne, G., Helfrich, M.H., Lim, K., Prasad, S., Lerman, D.A., et al. (2017) End Stage Renal Disease-Induced Hypercalcemia May Promote Aortic Valve Calcification via Annexin VI Enrichment of Valve Interstitial Cell Derived-Matrix Vesicles. Journal of Cellular Physiology, 232, 2985-2995.
https://doi.org/10.1002/jcp.25935
[29]  Liu, H., Wang, L., Pan, Y., Wang, X., Ding, Y., Zhou, C., Shah, A.M., Zhao, G. and Zhang, M. (2020) Celastrol Alleviates Aortic Valve Calcification via Inhibition of NADPH Oxidase 2 in Valvular Interstitial Cells. JACC Basic to Translational Science, 5, 35-49.
https://doi.org/10.1016/j.jacbts.2019.10.004
[30]  Li, F., Cai, Z., Chen, F., Shi, X., Zhang, Q., Chen, S., Shi, J., Wang, D.W. and Dong, N. (2012) Pioglitazone Attenuates Progression of Aortic Valve Calcification via Down-Regulating Receptor for Advanced Glycation End Products. Basic Research in Cardiology, 107, Article No. 306.
https://doi.org/10.1007/s00395-012-0306-0
[31]  Rajamannan, N.M., Subramaniam, M., Springett, M., Sebo, T.C., Niekrasz, M., McConnell, J.P., Singh, R.J., Stone, N.J., Bonow, R.O. and Spelsberg, T.C. (2002) Atorvastatin Inhibits Hypercholesterolemia-Induced Cellular Proliferation and Bone Matrix Production in the Rabbit Aortic Valve. Circulation, 105, 2660-2665.
https://doi.org/10.1161/01.CIR.0000017435.87463.72
[32]  Choi, B., Kim, E.Y., Kim, J.E., Oh, S., Park, S.O., Kim, S.M., Choi, H., Song, J.K. and Chang, E.J. (2021) Evogliptin Suppresses Calcific Aortic Valve Disease by Attenuating Inflammation, Fibrosis, and Calcification. Cells, 10, Article No. 57.
https://doi.org/10.3390/cells10010057
[33]  Liu, H., Wang, L., Pan, Y., Wang, X., Ding, Y., Zhou, C., Shah, A.M., Zhao, G. and Zhang, M. (2020) Celastrol Alleviates Aortic Valve Calcification via Inhibition of NADPH Oxidase 2 in Valvular Interstitial Cells. JACC Basic to Translational Science, 5, 35-49.
https://doi.org/10.1016/j.jacbts.2019.10.004
[34]  Plump, A.S., Smith, J.D., Hayek, T., Aalto-Setälä, K., Walsh, A., Verstuyft, J.G., Rubin, E.M. and Breslow, J.L. (1992) Severe Hypercholesterolemia and Atherosclerosis in Apolipoprotein E-Deficient Mice Created by Homologous Recombination in ES Cells. Cell, 71, 343-353.
https://doi.org/10.1016/0092-8674(92)90362-G
[35]  Piedrahita, J.A., Zhang, S.H., Hagaman, J.R., Oliver, P.M. and Maeda, N. (1992) Generation of Mice Carrying a Mutant Apolipoprotein E Gene Inactivated by Gene Targeting in Embryonic Stem Cells. Proceedings of the National Academy of Sciences of the United States of America, 89, 4471-4475.
https://doi.org/10.1073/pnas.89.10.4471
[36]  Ilyas, I., Little, P.J., Liu, Z., Xu, Y., Kamato, D., Berk, B.C., Weng, J. and Xu, S. (2022) Mouse Models of Atherosclerosis in Translational Research. Trends in Pharmacological Sciences, 43, 920-939.
https://doi.org/10.1016/j.tips.2022.06.009
[37]  Dybas, J., Bulat, K., Blat, A., Mohaissen, T., Wajda, A., Mardyla, M., Kaczmarska, M., Franczyk-Zarow, M., Malek, K., Chlopicki, S., et al. (2020) Age-Related and Atherosclerosis-Related Erythropathy in ApoE/LDLR(-/-) Mice. Biochimica et Biophysica Acta: Molecular Basis of Disease, 1866, Article ID: 165972.
https://doi.org/10.1016/j.bbadis.2020.165972
[38]  Tanaka, K., Sata, M., Fukuda, D., Suematsu, Y., Motomura, N., Takamoto, S., Hirata, Y. and Nagai, R. (2005) Age-Associated Aortic Stenosis in Apolipoprotein E-Deficient Mice. Journal of the American College of Cardiology, 46, 134-141.
https://doi.org/10.1016/j.jacc.2005.03.058
[39]  Weiss, R.M., Ohashi, M., Miller, J.D., Young, S.G. and Heistad, D.D. (2006) Calcific Aortic Valve Stenosis in Old Hypercholesterolemic Mice. Circulation, 114, 2065-2069.
https://doi.org/10.1161/CIRCULATIONAHA.106.634139
[40]  Stewart, B.F., Siscovick, D., Lind, B.K., Gardin, J.M., Gottdiener, J.S., Smith, V.E., Kitzman, D.W. and Otto, C.M. (1997) Clinical Factors Associated with Calcific Aortic Valve Disease fn1. Journal of the American College of Cardiology, 29, 630-634.
https://doi.org/10.1016/S0735-1097(96)00563-3
[41]  Drolet, M.C., Roussel, E., Deshaies, Y., Couet, J. and Arsenault, M. (2006) A High Fat/High Carbohydrate Diet Induces Aortic Valve Disease in C57BL/6J Mice. Journal of the American College of Cardiology, 47, 850-855.
https://doi.org/10.1016/j.jacc.2005.09.049
[42]  Maher, E.R., Young, G., Smyth-Walsh, B., Pugh, S. and Curtis, J.R. (1987) Aortic and Mitral Valve Calcification in Patients with End-Stage Renal Disease. The Lancet (London, England), 2, 875-877.
https://doi.org/10.1016/S0140-6736(87)91370-5
[43]  Ternacle, J., Cote, N., Krapf, L., Nguyen, A., Clavel, M.A. and Pibarot, P. (2019) Chronic Kidney Disease and the Pathophysiology of Valvular Heart Disease. Canadian Journal of Cardiology, 35, 1195-1207.
https://doi.org/10.1016/j.cjca.2019.05.028
[44]  Peacock, M. (2010) Calcium Metabolism in Health and Disease. Clinical Journal of the American Society of Nephrology: CJASN, 5, S23-S30.
https://doi.org/10.2215/CJN.05910809
[45]  Faggiano, P., Antonini-Canterin, F., Baldessin, F., Lorusso, R., D’Aloia, A. and Cas, L.D. (2006) Epidemiology and Cardiovascular Risk Factors of Aortic Stenosis. Cardiovascular Ultrasound, 4, Article No. 27.
https://doi.org/10.1186/1476-7120-4-27
[46]  Drolet, M.C., Couet, J. and Arsenault, M. (2008) Development of Aortic Valve Sclerosis or Stenosis in Rabbits: Role of Cholesterol and Calcium. The Journal of Heart Valve Disease, 17, 381-387.
[47]  Ngo, D.T., Stafford, I., Kelly, D.J., Sverdlov, A.L., Wuttke, R.D., Weedon, H., Nightingale, A.K., Rosenkranz, A.C., Smith, M.D., Chirkov, Y.Y., et al. (2008) Vitamin D(2) Supplementation Induces the Development of Aortic Stenosis in Rabbits: Interactions with Endothelial Function and Thioredoxin-Interacting Protein. European Journal of Pharmacology, 590, 290-296.
https://doi.org/10.1016/j.ejphar.2008.05.051
[48]  Hekimian, G., Passefort, S., Louedec, L., Houard, X., Jacob, M.P., Vahanian, A., Michel, J.B. and Messika-Zeitoun, D. (2009) High-Cholesterol Vitamin D2 Regimen: A Questionable In-Vivo Experimental Model of Aortic Valve Stenosis. The Journal of Heart Valve Disease, 18, 152-158.
[49]  Drolet, M.-C., Arsenault, M. and Couet, J. (2003) Experimental Aortic Valve Stenosis in Rabbits. Journal of the American College of Cardiology, 41, 1211-1217.
https://doi.org/10.1016/S0735-1097(03)00090-1
[50]  Sikura, K., Potor, L., Szerafin, T., Zarjou, A., Agarwal, A., Arosio, P., Poli, M., Hendrik, Z., Méhes, G., Oros, M., et al. (2019) Potential Role of H-Ferritin in Mitigating Valvular Mineralization. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 413-431.
https://doi.org/10.1161/ATVBAHA.118.312191
[51]  Lindman, B.R., Clavel, M.-A., Mathieu, P., Iung, B., Lancellotti, P., Otto, C.M. and Pibarot, P. (2016) Calcific Aortic Stenosis. Nature Reviews Disease Primers, 2, Article No. 16006.
https://doi.org/10.1038/nrdp.2016.6
[52]  Zeng, P., Yang, J., Liu, L., Yang, X., Yao, Z., Ma, C., Zhu, H., Su, J., Zhao, Q., Feng, K., et al. (2021) ERK1/2 Inhibition Reduces Vascular Calcification by Activating MiR-126-3p-DKK1/LRP6 Pathway. Theranostics, 11, 1129-1146.
https://doi.org/10.7150/thno.49771
[53]  Sharaf El Din, U.A.A., Salem, M.M. and Abdulazim, D.O. (2017) Uric Acid in the Pathogenesis of Metabolic, Renal, and Cardiovascular Diseases: A Review. Journal of Advanced Research, 8, 537-548.
https://doi.org/10.1016/j.jare.2016.11.004
[54]  Diwan, V., Brown, L. and Gobe, G.C. (2018) Adenine-Induced Chronic Kidney Disease in Rats. Nephrology (Carlton, Vic), 23, 5-11.
https://doi.org/10.1111/nep.13180
[55]  Gu, J., Lu, Y., Deng, M., Qiu, M., Tian, Y., Ji, Y., Zong, P., Shao, Y., Zheng, R., Zhou, B., et al. (2019) Inhibition of Acetylation of Histones 3 and 4 Attenuates Aortic Valve Calcification. Experimental & Molecular Medicine, 51, 1-14.
https://doi.org/10.1038/s12276-019-0272-9
[56]  Hruska, K.A., Mathew, S., Lund, R., Qiu, P. and Pratt, R. (2008) Hyperphosphatemia of Chronic Kidney Disease. Kidney International, 74, 148-157.
https://doi.org/10.1038/ki.2008.130
[57]  Giachelli, C.M. (2009) The Emerging Role of Phosphate in Vascular Calcification. Kidney International, 75, 890-897.
https://doi.org/10.1038/ki.2008.644
[58]  Adeney, K.L., Siscovick, D.S., Ix, J.H., Seliger, S.L., Shlipak, M.G., Jenny, N.S. and Kestenbaum, B.R. (2009) Association of Serum Phosphate with Vascular and Valvular Calcification in Moderate CKD. Journal of the American Society of Nephrology: JASN, 20, 381-387.
https://doi.org/10.1681/ASN.2008040349
[59]  Aikawa, E., Aikawa, M., Libby, P., Figueiredo, J.L., Rusanescu, G., Iwamoto, Y., Fukuda, D., Kohler, R.H., Shi, G.P., Jaffer, F.A., et al. (2009) Arterial and Aortic Valve Calcification Abolished by Elastolytic Cathepsin S Deficiency in Chronic Renal Disease. Circulation, 119, 1785-1794.
https://doi.org/10.1161/CIRCULATIONAHA.108.827972
[60]  Assmann, A., Vegh, A., Ghasemi-Rad, M., Bagherifard, S., Cheng, G., Sani, E.S., Ruiz-Esparza, G.U., Noshadi, I., Lassaletta, A.D., Gangadharan, S., et al. (2017) A Highly Adhesive and Naturally Derived Sealant. Biomaterials, 140, 115-127.
https://doi.org/10.1016/j.biomaterials.2017.06.004
[61]  Yan, A.T., Koh, M., Chan, K.K., Guo, H., Alter, D.A., Austin, P.C., Tu, J.V., Wijeysundera, H.C. and Ko, D.T. (2017) Association Between Cardiovascular Risk Factors and Aortic Stenosis: The CANHEART Aortic Stenosis Study. Journal of the American College of Cardiology, 69, 1523-1532.
https://doi.org/10.1016/j.jacc.2017.01.025
[62]  Liu, A.C., Joag, V.R. and Gotlieb, A.I. (2007) The Emerging Role of Valve Interstitial Cell Phenotypes in Regulating Heart Valve Pathobiology. The American Journal of Pathology, 171, 1407-1418.
https://doi.org/10.2353/ajpath.2007.070251
[63]  Freeman, R.V. and Otto, C.M. (2005) Spectrum of Calcific Aortic Valve Disease: Pathogenesis, Disease Progression, and Treatment Strategies. Circulation, 111, 3316-3326.
https://doi.org/10.1161/CIRCULATIONAHA.104.486738
[64]  Honda, S., Miyamoto, T., Watanabe, T., Narumi, T., Kadowaki, S., Honda, Y., Otaki, Y., Hasegawa, H., Netsu, S., Funayama, A., et al. (2014) A Novel Mouse Model of Aortic Valve Stenosis Induced by Direct Wire Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 270-278.
https://doi.org/10.1161/ATVBAHA.113.302610
[65]  Niepmann, S.T., Steffen, E., Zietzer, A., Adam, M., Nordsiek, J., Gyamfi-Poku, I., Piayda, K., Sinning, J.M., Baldus, S., Kelm, M., et al. (2019) Graded Murine Wire-Induced Aortic Valve Stenosis Model Mimics Human Functional and Morphological Disease Phenotype. Clinical Research in Cardiology, 108, 847-856.
https://doi.org/10.1007/s00392-019-01413-1
[66]  Artiach, G., Carracedo, M., Plunde, O., Wheelock, C.E., Thul, S., Sjovall, P., Franco-Cereceda, A., Laguna-Fernandez, A., Arnardottir, H. and Back, M. (2020) Omega-3 Polyunsaturated Fatty Acids Decrease Aortic Valve Disease through the Resolvin E1 and ChemR23 Axis. Circulation, 142, 776-789.
https://doi.org/10.1161/CIRCULATIONAHA.119.041868
[67]  McCabe, K.M., Booth, S.L., Fu, X., Shobeiri, N., Pang, J.J., Adams, M.A. and Holden, R.M. (2013) Dietary Vitamin K and Therapeutic Warfarin Alter the Susceptibility to Vascular Calcification in Experimental Chronic Kidney Disease. Kidney International, 83, 835-844.
https://doi.org/10.1038/ki.2012.477
[68]  Schurgers, L.J., Uitto, J. and Reutelingsperger, C.P. (2013) Vitamin K-Dependent Carboxylation of Matrix Gla-Protein: A Crucial Switch to Control Ectopic Mineralization. Trends in Molecular Medicine, 19, 217-226.
https://doi.org/10.1016/j.molmed.2012.12.008
[69]  Wei, N., Lu, L., Zhang, H., Gao, M., Ghosh, S., Liu, Z., Qi, J., Wang, J., Chen, J. and Huang, H. (2020) Warfarin Accelerates Aortic Calcification by Upregulating Senescence-Associated Secretory Phenotype Maker Expression. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 2043762.
https://doi.org/10.1155/2020/2043762
[70]  Ueland, T., Gullestad, L., Dahl, C.P., Aukrust, P., Aakhus, S., Solberg, O.G., Vermeer, C. and Schurgers, L.J. (2010) Undercarboxylated Matrix Gla Protein Is Associated with Indices of Heart Failure and Mortality in Symptomatic Aortic Stenosis. Journal of Internal Medicine, 268, 483-492.
https://doi.org/10.1111/j.1365-2796.2010.02264.x
[71]  Bjørklund, G., Svanberg, E., Dadar, M., Card, D.J., Chirumbolo, S., Harrington, D.J. and Aaseth, J. (2020) The Role of Matrix Gla Protein (MGP) in Vascular Calcification. Current Medicinal Chemistry, 27, 1647-1660.
https://doi.org/10.2174/0929867325666180716104159
[72]  Luo, G., Ducy, P., McKee, M.D., Pinero, G.J., Loyer, E., Behringer, R.R. and Karsenty, G. (1997) Spontaneous Calcification of Arteries and Cartilage in Mice Lacking Matrix GLA Protein. Nature, 386, 78-81.
https://doi.org/10.1038/386078a0
[73]  Nalevaiko, J.Z., Marques, J.V.O., Oliveira, M.F., Raetsch, A.W.P., Marques, G.L., Petterle, R.R., Moreira, C.A. and Borba, V.Z.C. (2021) Bone Density and Quality in Patients Treated with Direct-Acting Oral Anticoagulants versus Warfarin. Bone, 150, Article ID: 116000.
https://doi.org/10.1016/j.bone.2021.116000
[74]  Price, P.A., Williamson, M.K. and Lothringer, J.W. (1981) Origin of the Vitamin K-Dependent Bone Protein Found in Plasma and Its Clearance by Kidney and Bone. The Journal of Biological Chemistry, 256, 12760-12766.
https://doi.org/10.1016/S0021-9258(18)42960-2
[75]  Hirsh, J., Dalen, J.E., Deykin, D., Poller, L. and Bussey, H. (1995) Oral Anticoagulants. Mechanism of Action, Clinical Effectiveness, and Optimal Therapeutic Range. Chest, 108, 231s-246s.
https://doi.org/10.1378/chest.108.4_Supplement.231S
[76]  Price, P.A., Faus, S.A. and Williamson, M.K. (1998) Warfarin Causes Rapid Calcification of the Elastic Lamellae in Rat Arteries and Heart Valves. Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 1400-1407.
https://doi.org/10.1161/01.ATV.18.9.1400
[77]  Rattazzi, M., Iop, L., Faggin, E., Bertacco, E., Zoppellaro, G., Baesso, I., Puato, M., Torregrossa, G., Fadini, G.P., Agostini, C., et al. (2008) Clones of Interstitial Cells from Bovine Aortic Valve Exhibit Different Calcifying Potential When Exposed to Endotoxin and Phosphate. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 2165-2172.
https://doi.org/10.1161/ATVBAHA.108.174342
[78]  Bertacco, E., Millioni, R., Arrigoni, G., Faggin, E., Iop, L., Puato, M., Pinna, L.A., Tessari, P., Pauletto, P. and Rattazzi, M. (2010) Proteomic Analysis of Clonal Interstitial Aortic Valve Cells Acquiring a Pro-Calcific Profile. Journal of Proteome Research, 9, 5913-5921.
https://doi.org/10.1021/pr100682g
[79]  Yutzey, K.E., Demer, L.L., Body, S.C., Huggins, G.S., Towler, D.A., Giachelli, C.M., Hofmann-Bowman, M.A., Mortlock, D.P., Rogers, M.B., Sadeghi, M.M., et al. (2014) Calcific Aortic Valve Disease: A Consensus Summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 2387-2393.
https://doi.org/10.1161/ATVBAHA.114.302523
[80]  Zebboudj, A.F., Imura, M. and Boström, K. (2002) Matrix GLA Protein, a Regulatory Protein for Bone Morphogenetic Protein-2. The Journal of Biological Chemistry, 277, 4388-4394.
https://doi.org/10.1074/jbc.M109683200
[81]  Yao, Y., Zebboudj, A.F., Shao, E., Perez, M. and Boström, K. (2006) Regulation of Bone Morphogenetic Protein-4 by Matrix GLA Protein in Vascular Endothelial Cells Involves Activin-Like Kinase Receptor 1. The Journal of Biological Chemistry, 281, 33921-33930.
https://doi.org/10.1074/jbc.M604239200
[82]  Nakagawa, Y., Ikeda, K., Akakabe, Y., Koide, M., Uraoka, M., Yutaka, K.T., Kurimoto-Nakano, R., Takahashi, T., Matoba, S., Yamada, H., et al. (2010) Paracrine Osteogenic Signals via Bone Morphogenetic Protein-2 Accelerate the Atherosclerotic Intimal Calcification in Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 1908-1915.
https://doi.org/10.1161/ATVBAHA.110.206185
[83]  Schurgers, L.J., Joosen, I.A., Laufer, E.M., Chatrou, M.L., Herfs, M., Winkens, M.H., Westenfeld, R., Veulemans, V., Krueger, T., Shanahan, C.M., et al. (2012) Vitamin K-Antagonists Accelerate Atherosclerotic Calcification and Induce a Vulnerable Plaque Phenotype. PLOS ONE, 7, e43229.
https://doi.org/10.1371/journal.pone.0043229
[84]  Rattazzi, M., Faggin, E., Bertacco, E., Nardin, C., Pagliani, L., Plebani, M., Cinetto, F., Guidolin, D., Puato, M. and Pauletto, P. (2018) Warfarin, but Not Rivaroxaban, Promotes the Calcification of the Aortic Valve in ApoE-/-Mice. Cardiovascular Therapeutics, 36, E12438.
https://doi.org/10.1111/1755-5922.12438
[85]  Gao, L., Ji, Y., Lu, Y., Qiu, M., Shen, Y., Wang, Y., Kong, X., Shao, Y., Sheng, Y. and Sun, W. (2018) Low-Level Overexpression of P53 Promotes Warfarin-Induced Calcification of Porcine Aortic Valve Interstitial Cells by Activating Slug Gene Transcription. The Journal of Biological Chemistry, 293, 3780-3792.
https://doi.org/10.1074/jbc.M117.791145
[86]  Liu, J., Liu, C., Qian, C., Abela, G., Sun, W. and Kong, X. (2021) Ginkgo Biloba Extract EGB761 Alleviates Warfarin-Induced Aortic Valve Calcification through the BMP2/Smad1/5/Runx2 Signaling Pathway. Journal of Cardiovascular Pharmacology, 78, 411-421.
https://doi.org/10.1097/FJC.0000000000001082
[87]  Kruger, T., Oelenberg, S., Kaesler, N., Schurgers, L.J., Van De Sandt, A.M., Boor, P., Schlieper, G., Brandenburg, V.M., Fekete, B.C., Veulemans, V., et al. (2013) Warfarin Induces Cardiovascular Damage in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 2618-2624.
https://doi.org/10.1161/ATVBAHA.113.302244
[88]  Mohamed, S.A., Aherrahrou, Z., Liptau, H., Erasmi, A.W., Hagemann, C., Wrobel, S., Borzym, K., Schunkert, H., Sievers, H.H. and Erdmann, J. (2006) Novel Missense Mutations (P.T596M and P.P1797H) in NOTCH1 in Patients with Bicuspid Aortic Valve. Biochemical and Biophysical Research Communications, 345, 1460-1465.
https://doi.org/10.1016/j.bbrc.2006.05.046
[89]  McKellar, S.H., Tester, D.J., Yagubyan, M., Majumdar, R., Ackerman, M.J. and Sundt, T.M. (2007) Novel NOTCH1 Mutations in Patients with Bicuspid Aortic Valve Disease and Thoracic Aortic Aneurysms. The Journal of Thoracic and Cardiovascular Surgery, 134, 290-296.
https://doi.org/10.1016/j.jtcvs.2007.02.041
[90]  Tkatchenko, T.V., Moreno-Rodriguez, R.A., Conway, S.J., Molkentin, J.D., Markwald, R.R. and Tkatchenko, A.V. (2009) Lack of Periostin Leads to Suppression of Notch1 Signaling and Calcific Aortic Valve Disease. Physiological Genomics, 39, 160-168.
https://doi.org/10.1152/physiolgenomics.00078.2009
[91]  Garg, V., Muth, A.N., Ransom, J.F., Schluterman, M.K., Barnes, R., King, I.N., Grossfeld, P.D. and Srivastava, D. (2005) Mutations in NOTCH1 Cause Aortic Valve Disease. Nature, 437, 270-274.
https://doi.org/10.1038/nature03940
[92]  Theodoris, C.V., Mourkioti, F., Huang, Y., Ranade, S.S., Liu, L., Blau, H.M. and Srivastava, D. (2017) Long Telomeres Protect against Age-Dependent Cardiac Disease Caused by NOTCH1 Haploinsufficiency. Journal of Clinical Investigation, 127, 1683-1688.
https://doi.org/10.1172/JCI90338
[93]  El Accaoui, R.N., Gould, S.T., Hajj, G.P., Chu, Y., Davis, M.K., Kraft, D.C., Lund, D.D., Brooks, R.M., Doshi, H., Zimmerman, K.A., et al. (2014) Aortic Valve Sclerosis in Mice Deficient in Endothelial Nitric Oxide Synthase. The American Journal of Physiology-Heart and Circulatory Physiology, 306, H1302-H1313.
https://doi.org/10.1152/ajpheart.00392.2013
[94]  Garg, V. (2016) Notch Signaling in Aortic Valve Development and Disease. In: Nakanishi, T., Markwald, R.R., Baldwin, H.S., Keller, B.B., Srivastava, D. and Yamagishi, H., Eds., Etiology and Morphogenesis of Congenital Heart Disease. From Gene Function and Cellular Interaction to Morphology, Springer, Tokyo, 371-376.
[95]  Yoshioka, M., Yuasa, S., Matsumura, K., Kimura, K., Shiomi, T., Kimura, N., Shukunami, C., Okada, Y., Mukai, M., Shin, H., et al. (2006) Chondromodulin-I Maintains Cardiac Valvular Function by Preventing Angiogenesis. Nature Medicine, 12, 1151-1159.
https://doi.org/10.1038/nm1476
[96]  Galvin, K.M., Donovan, M.J., Lynch, C.A., Meyer, R.I., Paul, R.J., Lorenz, J.N., Fairchild-Huntress, V., Dixon, K.L., Dunmore, J.H., Gimbrone, M.A., et al. (2000) A Role for Smad6 in Development and Homeostasis of the Cardiovascular System. Nature Genetics, 24, 171-174.
https://doi.org/10.1038/72835
[97]  Guerraty, M. and Mohler III, E.R. (2007) Models of Aortic Valve Calcification. Journal of Investigative Medicine, 55, 278-283.
https://doi.org/10.2310/6650.2007.00012
[98]  Grim, J.C., Aguado, B.A., Vogt, B.J., Batan, D., Andrichik, C.L., Schroeder, M.E., Gonzalez-Rodriguez, A., Yavitt, F.M., Weiss, R.M. and Anseth, K.S. (2020) Secreted Factors from Proinflammatory Macrophages Promote an Osteoblast-Like Phenotype in Valvular Interstitial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, E296-E308.
https://doi.org/10.1161/ATVBAHA.120.315261
[99]  Toshima, T., Watanabe, T., Narumi, T., Otaki, Y., Shishido, T., Aono, T., Goto, J., Watanabe, K., Sugai, T., Takahashi, T., et al. (2020) Therapeutic Inhibition of MicroRNA-34a Ameliorates Aortic Valve Calcification via Modulation of Notch1-Runx2 Signalling. Cardiovascular Research, 116, 983-994.
https://doi.org/10.1093/cvr/cvz210
[100]  Jiang, Y., Chen, J., Wei, F., Wang, Y., Chen, S., Li, G. and Dong, N. (2021) Micromechanical Force Promotes Aortic Valvular Calcification. The Journal of Thoracic and Cardiovascular Surgery, 164, E313-E329.
https://doi.org/10.1016/j.jtcvs.2021.08.014
[101]  Su, Z., Zong, P., Chen, J., Yang, S., Shen, Y., Lu, Y., Yang, C., Kong, X., Sheng, Y. and Sun, W. (2020) Celastrol Attenuates Arterial and Valvular Calcification via Inhibiting BMP2/Smad1/5 Signalling. Journal of Cellular and Molecular Medicine, 24, 12476-12490.
https://doi.org/10.1111/jcmm.15779
[102]  Savard, C., Tartaglione, E.V., Kuver, R., Haigh, W.G., Farrell, G.C., Subramanian, S., Chait, A., Yeh, M.M., Quinn, L.S. and Ioannou, G.N. (2013) Synergistic Interaction of Dietary Cholesterol and Dietary Fat in Inducing Experimental Steatohepatitis. Hepatology (Baltimore, Md), 57, 81-92.
https://doi.org/10.1002/hep.25789
[103]  Schmidt, N., Brandsch, C., Kühne, H., Thiele, A., Hirche, F. and Stangl, G.I. (2012) Vitamin D Receptor Deficiency and Low Vitamin D Diet Stimulate Aortic Calcification and Osteogenic Key Factor Expression in Mice. PLOS ONE, 7, e35316.
https://doi.org/10.1371/journal.pone.0035316
[104]  Schmidt, N., Brandsch, C., Schutkowski, A., Hirche, F. and Stangl, G.I. (2014) Dietary Vitamin D Inadequacy Accelerates Calcification and Osteoblast-Like Cell Formation in the Vascular System of LDL Receptor Knockout and Wild-Type Mice. The Journal of Nutrition, 144, 638-646.
https://doi.org/10.3945/jn.113.189118
[105]  Moghadasian, M.H., Frohlich, J.J. and McManus, B.M. (2001) Advances in Experimental Dyslipidemia and Atherosclerosis. Laboratory Investigation; a Journal of Technical Methods and Pathology, 81, 1173-1183.
https://doi.org/10.1038/labinvest.3780331
[106]  Popoff, S.N., McGuire, J.L., Zerwekh, J.E. and Marks, S.C. (1989) Treatment of Congenital Osteopetrosis in the Rabbit with High-Dose 1,25-Dihydroxyvitamin D. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 4, 57-67.
https://doi.org/10.1002/jbmr.5650040109
[107]  Scragg, R., Khaw, K.T. and Murphy, S. (1995) Effect of Winter Oral Vitamin D3 Supplementation on Cardiovascular Risk Factors in Elderly Adults. European Journal of Clinical Nutrition, 49, 640-646.
[108]  Giles, D.A., Ramkhelawon, B., Donelan, E.M., Stankiewicz, T.E., Hutchison, S.B., Mukherjee, R., Cappelletti, M., Karns, R., Karp, C.L., Moore, K.J., et al. (2016) Modulation of Ambient Temperature Promotes Inflammation and Initiates Atherosclerosis in Wild Type C57BL/6 Mice. Molecular Metabolism, 5, 1121-1130.
https://doi.org/10.1016/j.molmet.2016.09.008
[109]  Newman, C.L., Creecy, A., Granke, M., Nyman, J.S., Tian, N., Hammond, M.A., Wallace, J.M., Brown, D.M., Chen, N., Moe, S.M., et al. (2016) Raloxifene Improves Skeletal Properties in an Animal Model of Cystic Chronic Kidney Disease. Kidney International, 89, 95-104.
https://doi.org/10.1038/ki.2015.315
[110]  Schroeder, M.E., Gonzalez Rodriguez, A., Speckl, K.F., Walker, C.J., Midekssa, F.S., Grim, J.C., Weiss, R.M. and Anseth, K.S. (2021) Collagen Networks within 3D PEG Hydrogels Support Valvular Interstitial Cell Matrix Mineralization. Acta Biomaterialia, 119, 197-210.
https://doi.org/10.1016/j.actbio.2020.11.012
[111]  Scheiber, D., Veulemans, V., Horn, P., Chatrou, M.L., Potthoff, S.A., Kelm, M., Schurgers, L.J. and Westenfeld, R. (2015) High-Dose Menaquinone-7 Supplementation Reduces Cardiovascular Calcification in a Murine Model of Extraosseous Calcification. Nutrients, 7, 6991-7011.
https://doi.org/10.3390/nu7085318
[112]  Kramann, R., Erpenbeck, J., Schneider, R.K., Röhl, A.B., Hein, M., Brandenburg, V.M., Van Diepen, M., Dekker, F., Marx, N., Floege, J., et al. (2014) Speckle Tracking Echocardiography Detects Uremic Cardiomyopathy Early and Predicts Cardiovascular Mortality in ESRD. Journal of the American Society of Nephrology: JASN, 25, 2351-2365.
https://doi.org/10.1681/ASN.2013070734
[113]  Tang, F.T., Chen, S.R., Wu, X.Q., Wang, T.Q., Chen, J.W., Li, J., Bao, L.P., Huang, H.Q. and Liu, P.Q. (2006) Hypercholesterolemia Accelerates Vascular Calcification Induced by Excessive Vitamin D via Oxidative Stress. Calcified Tissue International, 79, 326-339.
https://doi.org/10.1007/s00223-006-0004-8
[114]  Cardús, A., Panizo, S., Parisi, E., Fernandez, E. and Valdivielso, J.M. (2007) Differential Effects of Vitamin D Analogs on Vascular Calcification. Journal of Bone and Mineral Research: The Official Journal of the American Society for Bone and Mineral Research, 22, 860-866.
https://doi.org/10.1359/jbmr.070305
[115]  Hinton, R.B., Alfieri, C.M., Witt, S.A., Glascock, B.J., Khoury, P.R., Benson, D.W. and Yutzey, K.E. (2008) Mouse Heart Valve Structure and Function: Echocardiographic and Morphometric Analyses from the Fetus through the Aged Adult. The American Journal of Physiology-Heart and Circulatory Physiology, 294, H2480-2488.
https://doi.org/10.1152/ajpheart.91431.2007
[116]  Fazio, S. and Linton, M.F. (2001) Mouse Models of Hyperlipidemia and Atherosclerosis. Frontiers in Bioscience: A Journal and Virtual Library, 6, D515-D525.
https://doi.org/10.2741/A623
[117]  Sider, K.L., Blaser, M.C. and Simmons, C.A. (2011) Animal Models of Calcific Aortic Valve Disease. International Journal of Inflammation, 2011, Article ID: 364310.
https://doi.org/10.4061/2011/364310
[118]  Castellano, J.M., Kim, J., Stewart, F.R., Jiang, H., DeMattos, R.B., Patterson, B.W., Fagan, A.M., Morris, J.C., Mawuenyega, K.G., Cruchaga, C., et al. (2011) Human ApoE Isoforms Differentially Regulate Brain Amyloid-β Peptide Clearance. Science Translational Medicine, 3, 89ra57.
https://doi.org/10.1126/scitranslmed.3002156
[119]  Walden, C.C. and Hegele, R.A. (1994) Apolipoprotein E in Hyperlipidemia. Annals of Internal Medicine, 120, 1026-1036.
https://doi.org/10.7326/0003-4819-120-12-199406150-00009
[120]  Sutton, N.R., Bouïs, D., Mann, K.M., Rashid, I.M., McCubbrey, A.L., Hyman, M.C., Goldstein, D.R., Mei, A. and Pinsky, D.J. (2020) CD73 Promotes Age-Dependent Accretion of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 61-71.
https://doi.org/10.1161/ATVBAHA.119.313002
[121]  Hansson, G.K. and Hermansson, A. (2011) The Immune System in Atherosclerosis. Nature Immunology, 12, 204-212.
https://doi.org/10.1038/ni.2001
[122]  Trpkovic, A., Resanovic, I., Stanimirovic, J., Radak, D., Mousa, S.A., Cenic-Milosevic, D., Jevremovic, D. and Isenovic, E.R. (2015) Oxidized Low-Density Lipoprotein as a Biomarker of Cardiovascular Diseases. Critical Reviews in Clinical Laboratory Sciences, 52, 70-85.
https://doi.org/10.3109/10408363.2014.992063
[123]  Ishibashi, S., Brown, M.S., Goldstein, J.L., Gerard, R.D., Hammer, R.E. and Herz, J. (1993) Hypercholesterolemia in Low Density Lipoprotein Receptor Knockout Mice and Its Reversal by Adenovirus-Mediated Gene Delivery. Journal of Clinical Investigation, 92, 883-893.
https://doi.org/10.1172/JCI116663
[124]  Linton, M.F., Babaev, V.R., Gleaves, L.A. and Fazio, S. (1999) A Direct Role for the Macrophage Low Density Lipoprotein Receptor in Atherosclerotic Lesion Formation. The Journal of Biological Chemistry, 274, 19204-19210.
https://doi.org/10.1074/jbc.274.27.19204
[125]  Ishibashi, S., Goldstein, J.L., Brown, M.S., Herz, J. and Burns, D.K. (1994) Massive Xanthomatosis and Atherosclerosis in Cholesterol-Fed Low Density Lipoprotein Receptor-Negative Mice. Journal of Clinical Investigation, 93, 1885-1893.
https://doi.org/10.1172/JCI117179
[126]  Caligiuri, G., Levy, B., Pernow, J., Thorén, P. and Hansson, G.K. (1999) Myocardial Infarction Mediated by Endothelin Receptor Signaling in Hypercholesterolemic Mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 6920-6924.
https://doi.org/10.1073/pnas.96.12.6920
[127]  Du Preez, R., Paul, N., Mouatt, P., Majzoub, M.E., Thomas, T., Panchal, S.K. and Brown, L. (2020) Carrageenans from the Red Seaweed Sarconema filiforme Attenuate Symptoms of Diet-Induced Metabolic Syndrome in Rats. Marine Drugs, 18, Article No. 97.
https://doi.org/10.3390/md18020097
[128]  Price, P.A., Roublick, A.M. and Williamson, M.K. (2006) Artery Calcification in Uremic Rats Is Increased by a Low Protein Diet and Prevented by Treatment with Ibandronate. Kidney International, 70, 1577-1583.
https://doi.org/10.1038/sj.ki.5001841
[129]  Henley, C., Davis, J., Miller, G., Shatzen, E., Cattley, R., Li, X., Martin, D., Yao, W., Lane, N. and Shalhoub, V. (2009) The Calcimimetic AMG 641 Abrogates Parathyroid Hyperplasia, Bone and Vascular Calcification Abnormalities in Uremic Rats. European Journal of Pharmacology, 616, 306-313.
https://doi.org/10.1016/j.ejphar.2009.05.013
[130]  Matsui, I., Hamano, T., Mikami, S., Fujii, N., Takabatake, Y., Nagasawa, Y., Kawada, N., Ito, T., Rakugi, H., Imai, E., et al. (2009) Fully Phosphorylated Fetuin-A Forms a Mineral Complex in the Serum of Rats with Adenine-Induced Renal Failure. Kidney International, 75, 915-928.
https://doi.org/10.1038/ki.2008.700
[131]  Grande, K.J., Cochran, R.P., Reinhall, P.G. and Kunzelman, K.S. (1998) Stress Variations in the Human Aortic Root and Valve: The Role of Anatomic Asymmetry. Annals of Biomedical Engineering, 26, 534-545.
https://doi.org/10.1114/1.122
[132]  Rao, G.N. (2002) Diet and Kidney Diseases in Rats. Toxicologic Pathology, 30, 651-656.
https://doi.org/10.1080/01926230290166733
[133]  Hoek, A.C., Lemmens, A.G., Mullink, J.W. and Beynen, A.C. (1988) Influence of Dietary Calcium: Phosphorus Ratio on Mineral Excretion and Nephrocalcinosis in Female Rats. The Journal of Nutrition, 118, 1210-1216.
https://doi.org/10.1093/jn/118.10.1210
[134]  Schaafsma, G., Duursma, S.A., Visser, W.J. and Dekker, P.R. (1985) The Influence of Dietary Calcium on Kidney Calcification and Renal Function in Rats Fed High-Phosphate Diets. Bone, 6, 155-163.
https://doi.org/10.1016/8756-3282(85)90048-1
[135]  Le Quang, K., Bouchareb, R., Lachance, D., Laplante, M.A., El Husseini, D., Boulanger, M.C., Fournier, D., Fang, X.P., Avramoglu, R.K., Pibarot, P., et al. (2014) Early Development of Calcific Aortic Valve Disease and Left Ventricular Hypertrophy in a Mouse Model of Combined Dyslipidemia and Type 2 Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 2283-2291.
https://doi.org/10.1161/ATVBAHA.114.304205
[136]  Yu, C., Li, L., Xie, F., Guo, S., Liu, F., Dong, N. and Wang, Y. (2018) LncRNA TUG1 Sponges MiR-204-5p to Promote Osteoblast Differentiation through Upregulating Runx2 in Aortic Valve Calcification. Cardiovascular Research, 114, 168-179.
https://doi.org/10.1093/cvr/cvx180
[137]  Aikawa, E., Nahrendorf, M., Sosnovik, D., Lok, V.M., Jaffer, F.A., Aikawa, M. and Weissleder, R. (2007) Multimodality Molecular Imaging Identifies Proteolytic and Osteogenic Activities in Early Aortic Valve Disease. Circulation, 115, 377-386.
https://doi.org/10.1161/CIRCULATIONAHA.106.654913
[138]  Sikura, K., Potor, L., Szerafin, T., Oros, M., Nagy, P., Méhes, G., Hendrik, Z., Zarjou, A., Agarwal, A., Posta, N., et al. (2020) Hydrogen Sulfide Inhibits Calcification of Heart Valves; Implications for Calcific Aortic Valve Disease. British Journal of Pharmacology, 177, 793-809.
https://doi.org/10.1111/bph.14691
[139]  Rajamannan, N.M. (2011) The Role of Lrp5/6 in Cardiac Valve Disease: Experimental Hypercholesterolemia in the ApoE-/-/Lrp5-/-Mice. Journal of Cellular Biochemistry, 112, 2987-2991.
https://doi.org/10.1002/jcb.23221
[140]  Colleville, B., Perzo, N., Avinée, G., Dumesnil, A., Ziegler, F., Billoir, P., Eltchaninoff, H., Richard, V. and Durand, E. (2019) Impact of High-Fat Diet and Vitamin D(3) Supplementation on Aortic Stenosis Establishment in Waved-2 Epidermal Growth Factor Receptor Mutant Mice. Journal of Integrative Medicine, 17, 107-114.
https://doi.org/10.1016/j.joim.2019.01.010
[141]  Zeng, Z., Nievelstein-Post, P., Yin, Y., Jan, K.M., Frank, J.S. and Rumschitzki, D.S. (2007) Macromolecular Transport in Heart Valves. III. Experiment and Theory for the Size Distribution of Extracellular Liposomes in Hyperlipidemic Rabbits. The American Journal of Physiology-Heart and Circulatory Physiology, 292, H2687-H2697.
https://doi.org/10.1152/ajpheart.00606.2006
[142]  Choi, B., Lee, S., Kim, S.M., Lee, E.J., Lee, S.R., Kim, D.H., Jang, J.Y., Kang, S.W., Lee, K.U., Chang, E.J., et al. (2017) Dipeptidyl Peptidase-4 Induces Aortic Valve Calcification by Inhibiting Insulin-Like Growth Factor-1 Signaling in Valvular Interstitial Cells. Circulation, 135, 1935-1950.
https://doi.org/10.1161/CIRCULATIONAHA.116.024270
[143]  Synetos, A., Toutouzas, K., Drakopoulou, M., Koutagiar, I., Benetos, G., Kotronias, R., Anousakis-Vlachochristou, N., Latsios, G., Karanasos, A., Agrogiannis, G., et al. (2018) Inhibition of Aortic Valve Calcification by Local Delivery of Zoledronic Acid-An Experimental Study. Journal of Cardiovascular Translational Research, 11, 192-200.
https://doi.org/10.1007/s12265-018-9802-4
[144]  Nus, M., MacGrogan, D., Martínez-Poveda, B., Benito, Y., Casanova, J.C., Fernández-Avilés, F., Bermejo, J. and De La Pompa, J.L. (2011) Diet-Induced Aortic Valve Disease in Mice Haploinsufficient for the Notch Pathway Effector RBPJK/CSL. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1580-1588.
https://doi.org/10.1161/ATVBAHA.111.227561
[145]  Shuvy, M., Abedat, S., Beeri, R., Danenberg, H.D., Planer, D., Ben-Dov, I.Z., Meir, K., Sosna, J. and Lotan, C. (2008) Uraemic Hyperparathyroidism Causes a Reversible Inflammatory Process of Aortic Valve Calcification in Rats. Cardiovascular Research, 79, 492-499.
https://doi.org/10.1093/cvr/cvn088
[146]  Wang, L., Tang, R., Zhang, Y., Liu, Z., Chen, S., Song, K., Guo, Y., Zhang, L., Wang, X., Wang, X., et al. (2020) A Rat Model with Multivalve Calcification Induced by Subtotal Nephrectomy and High-Phosphorus Diet. Kidney Disease (Basel), 6, 346-354.
https://doi.org/10.1159/000506013
[147]  Assmann, A., Zwirnmann, K., Heidelberg, F., Schiffer, F., Horstkotter, K., Munakata, H., Gremse, F., Barth, M., Lichtenberg, A. and Akhyari, P. (2014) The Degeneration of Biological Cardiovascular Prostheses under Pro-Calcific Metabolic Conditions in a Small Animal Model. Biomaterials, 35, 7416-7428.
https://doi.org/10.1016/j.biomaterials.2014.05.034
[148]  Fang, M., Liu, K., Li, X., Wang, Y., Li, W. and Li, B. (2020) AntagomiR-29b Inhibits Vascular and Valvular Calcification and Improves Heart Function in Rats. Journal of Cellular and Molecular Medicine, 24, 11546-11557.
https://doi.org/10.1111/jcmm.15770
[149]  Cote, N., El Husseini, D., Pepin, A., Bouvet, C., Gilbert, L.A., Audet, A., Fournier, D., Pibarot, P., Moreau, P. and Mathieu, P. (2012) Inhibition of Ectonucleotidase with ARL67156 Prevents the Development of Calcific Aortic Valve Disease in Warfarin-Treated Rats. European Journal of Pharmacology, 689, 139-146.
https://doi.org/10.1016/j.ejphar.2012.05.016
[150]  Barrick, C.J., Roberts, R.B., Rojas, M., Rajamannan, N.M., Suitt, C.B., O’Brien, K.D., Smyth, S.S. and Threadgill, D.W. (2009) Reduced EGFR Causes Abnormal Valvular Differentiation Leading to Calcific Aortic Stenosis and Left Ventricular Hypertrophy in C57BL/6J but Not 129S1/SvImJ Mice. The American Journal of Physiology-Heart and Circulatory Physiology, 297, H65-75.
https://doi.org/10.1152/ajpheart.00866.2008
[151]  Lee, T.C., Zhao, Y.D., Courtman, D.W. and Stewart, D.J. (2000) Abnormal Aortic Valve Development in Mice Lacking Endothelial Nitric Oxide Synthase. Circulation, 101, 2345-2348.
https://doi.org/10.1161/01.CIR.101.20.2345
[152]  Bosse, K., Hans, C.P., Zhao, N., Koenig, S.N., Huang, N., Guggilam, A., LaHaye, S., Tao, G., Lucchesi, P.A., Lincoln, J., et al. (2013) Endothelial Nitric Oxide Signaling Regulates Notch1 in Aortic Valve Disease. Journal of Molecular and Cellular Cardiology, 60, 27-35.
https://doi.org/10.1016/j.yjmcc.2013.04.001
[153]  Nigam, V. and Srivastava, D. (2009) Notch1 Represses Osteogenic Pathways in Aortic Valve Cells. Journal of Molecular and Cellular Cardiology, 47, 828-834.
https://doi.org/10.1016/j.yjmcc.2009.08.008
[154]  Hakuno, D., Kimura, N., Yoshioka, M., Mukai, M., Kimura, T., Okada, Y., Yozu, R., Shukunami, C., Hiraki, Y., Kudo, A., et al. (2010) Periostin Advances Atherosclerotic and Rheumatic Cardiac Valve Degeneration by Inducing Angiogenesis and MMP Production in Humans and Rodents. Journal of Clinical Investigation, 120, 2292-2306.
https://doi.org/10.1172/JCI40973

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133