In this note we study subplanes of order q of the projective plane
and the ruled varieties
of
using the spatial representation of Π in Σ, by fixing a hyperplane
with a regular spread of planes. First are shown some configurations of the affine q-subplanes. Then to prove that a variety
of Σ represents a non-affine subplane of order q of Π, after having shown basic incidence properties of it, such a variety
is constructed by choosing appropriately the two directrix curves in two complementary subspaces of Σ. The result can be translated into further incidence properties of the affine points of
References
[1]
André, J. (1954) Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe. Mathematische Zeitschrift, 60, 156-186. https://doi.org/10.1007/BF01187370
[2]
Bruck, R.H. and Bose, R.C. (1966) Linear Representation of Projective Planes in Projective Spaces. Journal of Algebra, 4, 117-172. https://doi.org/10.1016/0021-8693(66)90054-8
[3]
Casse, R. and Quinn, C.T. (2002) Ruled Cubic Surfaces in , Baer Subplanes of and Hermitian Curves. Discrete Mathematics, 248, 17-25. https://doi.org/10.1016/S0012-365X(01)00182-0
[4]
Vincenti, R. (1980) Alcuni tipi di varietá di e sottopiani di Baer, Algebra e Geometria, 2, 31-44.
[5]
Vincenti, R. (1983) A Survey on Varieties of and Baer Subplanes of Translation Planes. Annals of Discrete Math, 18, 775-780. https://doi.org/10.1016/S0304-0208(08)73355-3
[6]
Bertini, E. (1907) Introduzione alla geometria proiettiva degli iperspazi. Enrico Spoerri Editore, Pisa.
[7]
Hirschfeld, J.W.P. (1985) Finite Projective Spaces of Three Dimensions. Clarendon Press, Oxford.
[8]
Barlotti, A. (1962) Un’osservazione sulle proprietá che caratterizzano un piano grafico finito, Boll, No.4, 394-398.
[9]
Corsi, G. (1963) Sui sistemi minimi di assiomi atti a definire un piano grafico finito. Nota dell’Istituto Matematico di Firenze, Marzo.