全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Subplanes of PG( 2, q 3 ) and the Ruled Varieties V 2 5 of PG( 6,q )

DOI: 10.4236/ojdm.2024.142003, PP. 16-27

Keywords: Finite Geometry, Translation Planes, Spreads, Varieties

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this note we study subplanes of order q of the projective plane Π=PG( 2, q 3 ) and the ruled varieties V 2 5 of Σ=PG( 6,q ) using the spatial representation of Π in Σ, by fixing a hyperplane Σ with a regular spread of planes. First are shown some configurations of the affine q-subplanes. Then to prove that a variety V 2 5 of Σ represents a non-affine subplane of order q of Π, after having shown basic incidence properties of it, such a variety V 2 5 is constructed by choosing appropriately the two directrix curves in two complementary subspaces of Σ. The result can be translated into further incidence properties of the affine points of V 2 5

References

[1]  André, J. (1954) Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe. Mathematische Zeitschrift, 60, 156-186.
https://doi.org/10.1007/BF01187370
[2]  Bruck, R.H. and Bose, R.C. (1966) Linear Representation of Projective Planes in Projective Spaces. Journal of Algebra, 4, 117-172.
https://doi.org/10.1016/0021-8693(66)90054-8
[3]  Casse, R. and Quinn, C.T. (2002) Ruled Cubic Surfaces in , Baer Subplanes of and Hermitian Curves. Discrete Mathematics, 248, 17-25.
https://doi.org/10.1016/S0012-365X(01)00182-0
[4]  Vincenti, R. (1980) Alcuni tipi di varietá di e sottopiani di Baer, Algebra e Geometria, 2, 31-44.
[5]  Vincenti, R. (1983) A Survey on Varieties of and Baer Subplanes of Translation Planes. Annals of Discrete Math, 18, 775-780.
https://doi.org/10.1016/S0304-0208(08)73355-3
[6]  Bertini, E. (1907) Introduzione alla geometria proiettiva degli iperspazi. Enrico Spoerri Editore, Pisa.
[7]  Hirschfeld, J.W.P. (1985) Finite Projective Spaces of Three Dimensions. Clarendon Press, Oxford.
[8]  Barlotti, A. (1962) Un’osservazione sulle proprietá che caratterizzano un piano grafico finito, Boll, No.4, 394-398.
[9]  Corsi, G. (1963) Sui sistemi minimi di assiomi atti a definire un piano grafico finito. Nota dell’Istituto Matematico di Firenze, Marzo.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133