全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

God Time = Planck Time: Finally Detected! And Its Relation to Hubble Time

DOI: 10.4236/ojm.2024.142004, PP. 40-66

Keywords: Planck Time, Fundamental Time, Indivisible Time, Newton, Planck Length, Quantum Gravity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Newton already mentioned indivisible time in Principia. In 1899, Max Planck derived a unique time period from three universal constants: G, c, and ħ, and today this is known as the Planck time. The Planck time is of the order of about 10−44 seconds while the best atomic clocks are down to 10−19 seconds. An approach has recently been outlined that puts an upper limit on the quantization of time to 10−33 seconds; this is, however, still far away from the Planck time. We demonstrate that the Planck time can easily be measured without any knowledge of any other physical constants. This is remarkable as this means we have demonstrated that the Planck time and therefore the Planck scale is real and detectable. It has taken more than 100 years to understand this. The reason for the breakthrough in Planck scale physics in recent years comes from understanding that G is a composite constant and that the true matter wavelength is the Compton wavelength rather than the de Broglie wavelength. When this is understood, the mysteries of the Planck scale can be uncovered. In this paper, we also demonstrate how to measure the number of Planck events in a gravitational mass without relying on any constants. This directly relates to a new and simple method for quantizing general relativity theory that we also will shortly discuss.

References

[1]  Lederman, L. (1993) The God Particle. Dell Publishing, New York.
[2]  Newton, I. (1686) Philosophiae Naturalis Principia Mathematica. Jussu Societatis Regiae ac Typis Josephi Streater, London.
https://doi.org/10.5479/sil.52126.39088015628399
[3]  Heberle-Bors, E. (2004) Bible Study Led Newton to Scientific Discoveries. Nature, 432, 271.
https://doi.org/10.1038/432271c
[4]  Taylor, C.C.W. (1999) The Atomists: Leucippus and Democritus, Fragments and Translation with Commentary. University of Toronto Press, Toronto.
[5]  Guthrie, W.K.C. (1962) A History of Greek Philopsophy, the Earlier Presocratics and the Pythagoreans. Cambridge University Press, Cambridge.
[6]  Bonner, G., et al. (1995) Sermons: The Work of Saint Augustine, a Translation for the 21 Century: “Explaining the Atom of and the Twinkling of an Eye in Which the Dead Are All Going to Rise Again” Sermon Number 362, Page 256. New City Press, New York.
[7]  MacCarron, M. (2021) Bede and Time, Computus, Theology and History in the Early Medieval World. Routledge, New York.
[8]  Doyle, C. (2021) Atoms and Time I. In: Zilioli, U., Ed., Atomism in Philosophy, Bloomsbury Publishing, New York, 216-223.
https://doi.org/10.5040/9781350107526.0019
[9]  Redondi, P. (1989) Galileo: Heretic. Princeton University Press, Princeton.
https://doi.org/10.1063/1.2810883
[10]  Lemaître, G. (1927) Un univers homogétne de masse constante et de rayon croissant rendant compte de la vitesse radiale des nétbuleuses extra-galactiques. Annales de la Sociétét Scientifique de Bruxelles, 47, 49-56.
[11]  Hubble, E. (1926) Extragalactic Nebulae. Astrophysical Journal, 64, 321-369.
https://doi.org/10.1086/143018
[12]  Williams, H.S. and Williams, E.H. (1904) A History of Science. Harper and Brothers, New York.
https://doi.org/10.5962/bhl.title.21282
[13]  Gæury, M. (2013) Epicurean Time Atomism and Aristotle’s Physics. Les Etudes Philosophiques, 107, 535-552.
https://www.cairn.info/revue-les-etudes-philosophiques-2013-4-page-535.htm
[14]  Maimonides, M. (1190) A Guide for the Perplexed.
[15]  Planck, M. (1899) Natuerliche Masseinheiten. Der Königlich Preussischen Akademie Der Wissenschaften, Berlin.
https://www.biodiversitylibrary.org/item/93034#page/7/mode/1up
[16]  Planck, M. (1906) Vorlesungen über die Theorie der Wärmestrahlung. J.A. Barth, Leipzig, 163.
[17]  Wadlinger, R.L. and Hunter, G. (1988) Max Planck’s Natural Units. The Physics Teacher, 26, 528-529.
https://doi.org/10.1119/1.2342611
[18]  Ng, Y.J., Christiansen, W.A. and van Dam, H. (2003) Probing Planck-Scale Physics with Extragalactic Sources? The Astrophysical Journal, 591, L87.
https://doi.org/10.1086/377121
[19]  Gharibyan, V. (2012) Testing Planck-Scale Gravity with Accelerators. Physical Review Letters, 1090, Article ID: 141103.
https://doi.org/10.1103/PhysRevLett.109.141103
[20]  Hees, A., et al. (2017) Tests of Lorentz Symmetry in the Gravitational Sector. Universe, 2, Article No. 30.
https://doi.org/10.3390/universe2040030
[21]  Zanon-Willette, T., Lefevre, R., Sillitoe, R.M. and Almonacil, N.S. (2018) Composite Laser-Pulses Spectroscopy for High-Accuracy Optical Clocks: A Review of Recent Progress and Perspectives. Reports on Progress in Physics, 81, Article ID: 094401.
https://doi.org/10.1088/1361-6633/aac9e9
[22]  Wendel, G., Martínez, L. and Bojowald, M. (2020) Physical Implications of a Fundamental Period of Time. Physical Review Letters, 124, Article ID: 241301.
https://doi.org/10.1103/PhysRevLett.124.241301
[23]  Adler, S.L. (2010) Six Easy Roads to the Planck Scale. American Journal of Physics, 78, 925-932.
https://doi.org/10.1119/1.3439650
[24]  Hossenfelder, S. (2012) Can We Measure Structures to a Precision Better than the Planck Length? Classical and Quantum Gravity, 29, Article ID: 115011.
https://doi.org/10.1088/0264-9381/29/11/115011
[25]  Ball, P. (1999) Physics at the Planck Time. Nature, 402, C61.
https://doi.org/10.1038/35011550
[26]  Haug, E.G. (2020) Collision Space-Time: Unified Quantum Gravity. Physics Essays, 330, 46-78.
https://doi.org/10.4006/0836-1398-33.1.46
[27]  Haug, E.G. (2022) Unified Quantum Gravity Field Equation Describing the Universe from the Smallest to the Cosmological Scales. Physics Essays, 35, 61-71.
https://doi.org/10.4006/0836-1398-35.1.61
[28]  Cohen, E.R. (1987) Fundamental Physical Constants. In: Sabbata and Melniko, V.N., Eds., Gravitational Measurements, Fundamental Metrology and Constants, Kluwer Academic Publishers, Amsterdam, 59.
https://doi.org/10.1007/978-94-009-2955-5_5
[29]  McCulloch, M.E. (2016) Quantised Inertia from Relativity and the Uncertainty Principle. Europhysics Letters (EPL), 1150, Article No. 69001.
https://doi.org/10.1209/0295-5075/115/69001
[30]  Strehl, K. (1913) Raum-und Zeitaome. Das Weltall, 13, 333.
https://www.astw.de/publikationen/weltall/pdf/weltall_jg_13.pdf
[31]  Eddington, A.S. (1918) Report on the Relativity Theory of Gravitation. The Physical Society of London, Fleetway Press, London.
[32]  Bridgman, P.W. (1931) Dimensional Analysis. Yale University Press, New Haven.
[33]  Das, S. and Modak, S.K. (2021) A Novel Mechanism for Probing the Planck Scale. Classical and Quantum Gravity, 39, Article ID: 015005.
https://doi.org/10.1088/1361-6382/ac38d3
[34]  Haug, E.G. (2017) Can the Planck Length Be Found Independent of Big G? Applied Physics Research, 9, 58-66.
https://doi.org/10.5539/apr.v9n6p58
[35]  Haug, E.G. (2020) Finding the Planck Length Multiplied by the Speed of Light without Any Knowledge of G, C, or H, Using a Newton Force Spring. Journal Physics Communication, 4, Article ID: 075001.
https://doi.org/10.1088/2399-6528/ab9dd7
[36]  Haug, E.G. (2021) Measurements of the Planck Length from a Ball-Clock without Knowledge of Newton’s Gravitational Constant G or the Planck Constant. European Journal of Applied Physics, 3, 15-20.
https://www.ej-physics.org/index.php/ejphysics/article/view/133
[37]  Haug, E.G. (2022) Planck Units Measured Totally Independently of Big G. Open Journal of Microphysics, 12, 55-85.
https://doi.org/10.4236/ojm.2022.122004
[38]  de Broglie, L. (1924) Recherches sur la théorie des quanta. Annalen der Physik, 10, 22-128.
https://doi.org/10.1051/anphys/192510030022
[39]  de Broglie, L. (1930) An Introduction to the Study of Wave Mechanics. Metheum & Co., Essex.
[40]  Davisson, C. and Germer, L.H. (1927) Diffraction of Electrons by a Crystal of Nickel. Physical Review, 300, 705-741.
https://doi.org/10.1103/PhysRev.30.705
[41]  Compton, A.H. (1923) A Quantum Theory of the Scattering of X-Rays by Light Elements. Physical Review, 210, 483-502.
https://doi.org/10.1103/PhysRev.21.483
[42]  Haug, E.G. (2022) Derivation of a Relativistic Compton Wave. European Journal of Applied Physics, 4, 24-27.
https://doi.org/10.24018/ejphysics.2022.4.4.190
[43]  Haug, E.G. (2020) Rethinking the Foundation of Physics and Its Relation to Quantum Gravity and Quantum Probabilities: Unification of Gravity and Quantum Mechanics.
https://www.preprints.org/manuscript/202012.0483/v2
[44]  Haug, E.G. (2021) Quantum Gravity Hidden in Newton Gravity and How to Unify It with Quantum Mechanics. In: Krasnoholovets, V., Ed., The Origin of Gravity from the First Principles, NOVA Publishing, New York, 133-216.
[45]  Haug, E.G. (2018) Newton and Einstein’s Gravity in a New Perspective for Planck Masses and Smaller Sized Objects. International Journal of Astronomy and Astrophysics, 8, 6-23.
https://doi.org/10.4236/ijaa.2018.81002
[46]  Levitt, L.S. (1958) The Proton Compton Wavelength as the “Quantum” of Length. Experientia, 14, 233-234.
https://doi.org/10.1007/BF02159173
[47]  Trinhammer, O.L. and Bohr, H.G. (2019) On Proton Charge Radius Definition. EPL, 128, Article No. 21001.
https://doi.org/10.1209/0295-5075/128/21001
[48]  D’Auria, S. (2018) Introduction to Nuclear and Particle Physics. Springer, Berlin.
[49]  Sturm, S., et al. (2014) High-Precision Measurement of the Atomic Mass of the Electron. Nature, 506, 467.
https://link.springer.com/article/10.1007/BF01414243
[50]  Gräff, G., Kalinowsky, H. and Traut, J. (1980) A Direct Determination of the Proton Electron Mass Ratio. Zeitschrift für Physik A Atoms and Nuclei, 297, 35-39.
https://link.springer.com/article/10.1007/BF01414243
[51]  Van-Dyck, R.S., Moore, F.L., Farnham, D.L. and Schwinberg, P.B. (1985) New Measurement of the Proton-Electron Mass Ratio. International Journal of Mass Spectrometry and Ion Processes, 66, 327-337.
https://doi.org/10.1016/0168-1176(85)80006-9
[52]  Becker, P. and Bettin, H. (2011) The Avogadro Constant: Determining the Number of Atoms in a Single-Crystal 28Si Sphere. Philosophical Transactions of the Royal Society A, 369, 3925-3935.
https://doi.org/10.1098/rsta.2011.0222
[53]  Becker, P. (2012) The New Kilogram Definition Based on Counting the Atoms in a 28Si Crystal. Contemporary Physics, 53, 461-479.
https://doi.org/10.1080/00107514.2012.746054
[54]  Bettin, H., Fujii, K., Man, J., Mana, G., Massa, E. and Picard, A. (2013) Accurate Measurements of the Avogadro and Planck Constants by Counting Silicon Atoms. Annalen der Physik, 525, 680-687.
https://doi.org/10.1002/andp.201300038
[55]  Li, S.S., et al. (2014) Progress on Accurate Measurement of the Planck Constant: Watt Balance and Counting Atoms. Chinese Physics B, 24, Article ID: 010601.
https://doi.org/10.1088/1674-1056/24/1/010601
[56]  Clotfelter, B.E. (1987) The Cavendish Experiment as Cavendish Knew It. American Journal of Physics, 55, 210.
https://doi.org/10.1119/1.15214
[57]  Haug, E.G. (2021) Using a Grandfather Pendulum Clock to Measure the World’s Shortest Time Interval, the Planck Time (with Zero Knowledge of G). Journal of Applied Mathematics and Physics, 9, 1076-1088.
https://doi.org/10.4236/jamp.2021.95074
[58]  Haug, E.G. (2021) Demonstration That Newtonian Gravity Moves At the Speed of Light and Not Instantaneously (Infinite Speed) as Thought! Journal of Physics Communication, 5, Article ID: 025005.
https://doi.org/10.1088/2399-6528/abe4c8
[59]  Cornu, A. and Baille, J.B. (1873) Détermination nouvelle de la constante de l’attraction et de la densité moyenne de la terre. Comptes rendus de lAcadémie des Sciences, 76, 954-957.
[60]  Boys, C.V. (1894) The Newtonian Constant of Gravitation. Nature, 50, 571.
https://doi.org/10.1038/050571a0
[61]  Haug, E.G. (2022) Progress in the Composite View of the Newton Gravitational Constant and Its Link to the Planck Scale. Universe, 8, Article No. 454.
https://doi.org/10.3390/universe8090454
[62]  Einstein, A. (1916) Näherungsweise integration der feldgleichungen der gravitation. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, Berlin.
[63]  Haug, E.G. (2016) Planck Quantization of Newton and Einstein Gravitation. International Journal of Astronomy and Astrophysics, 6, 206-217.
https://doi.org/10.4236/ijaa.2016.62017
[64]  Haug, E.G. (2023) Different Mass Definitions and Their Pluses and Minuses Related to Gravity: The Kilogram Mass Is Likely Incomplete.
[65]  Haug, E.G. (2024) CMB, Hawking, Planck, and Hubble Scale Relations Consistent with Recent Quantization of General Relativity Theory. International Journal of Theoretical Physics, 63, Article No. 57.
https://doi.org/10.1007/s10773-024-05570-6
[66]  Tatum, E.T., Seshavatharam, U.V.S. and Lakshminarayana, S. (2015) The Basics of Flat Space Cosmology. International Journal of Astronomy and Astrophysics, 5, 116-124.
https://doi.org/10.4236/ijaa.2015.52015
[67]  Haug, E.G. and Wojnow, S. (2023) How to Predict the Temperature of the CMB Directly Using the Hubble Parameter and the Planck Scale Using the Stefan-Boltzman Law. Research Square.
https://doi.org/10.21203/rs.3.rs-3576675/v1
[68]  Haug, E.G. and Tatum, E.T. (2023) The Hawking Hubble Temperature as a Minimum Temperature, the Planck Temperature as a Maximum Temperature and the CMB Temperature as Their Geometric Mean Temperature.
[69]  Hinkley, N., et al. (2013) An Atomic Clock with 10−18 Instability. Science, 341, 1215-1218.
https://doi.org/10.1126/science.1240420
[70]  Bloom, B.J., et al. (2014) An Optical Lattice Clock with Accuracy and Stability at the 10−18 Level. Nature, 506, 71-75.
https://doi.org/10.1038/nature12941
[71]  Nicholson, T.L., et al. (2015) Systematic Evaluation of an Atomic Clock at 2×10−18 Total Uncertainty. Nature Communication, 6, Article No. 6896.
https://doi.org/10.1038/ncomms7896
[72]  Boulder Atomic Clock Optical Network (BACON) Collaboration (2021) Frequency Ratio Measurements at 18-Digit Accuracy Using an Optical Clock Network. Nature, 591, 564-569.
https://doi.org/10.1038/s41586-021-03253-4
[73]  Haug, E.G. (2023) Different Mass Definitions and Their Pluses and Minuses Related to Gravity. Foundations, 3, 199-219.
https://doi.org/10.3390/foundations3020017
[74]  Fixsen, D.J., et al. (2004) The Temperature of the Cosmic Microwave Background at 10 Ghz. The Astrophysical Journal, 612, 86-95.
https://doi.org/10.1086/421993
[75]  Fixsen, D.J. (2009) The Temperature of the Cosmic Microwave Background. The Astrophysical Journal, 707, 916-920.
https://doi.org/10.1088/0004-637X/707/2/916
[76]  Noterdaeme, P., Petitjean, P., Srianand, R., Ledoux, C. and López, S. (2011) The Evolution of the Cosmic Microwave Background Temperature. Astronomy and Astrophysics, 526, L7.
https://doi.org/10.1051/0004-6361/201016140
[77]  Dhal, S., Singh, S., Konar, K. and Paul, R.K. (2023) Calculation of Cosmic Microwave Background Radiation Parameters Using COBE/FIRAS Dataset. Experimental Astronomy, 56, 715-726.
https://doi.org/10.1007/s10686-023-09904-w
[78]  Friedmann, A. (1922) Über die Krüng des Raumes. Zeitschrift für Physik, 10, 377-386.
https://doi.org/10.1007/BF01332580
[79]  Haug, E.G. (2021) Quantum Cosmology: Cosmology Linked to the Planck Scale.
[80]  Haug, E.G. (2022) Cosmological Scale versus Planck Scale: As above, So below! Physics Essays, 35, 356-363.
https://doi.org/10.4006/0836-1398-35.4.356
[81]  Haug, E.G. (2024) The Extremal Universe Exact Solution from Einstein’s Field Equation Gives the Cosmological Constant Directly. Journal of High Energy Physics, Gravitation and Cosmology, 10, 386-397.
https://doi.org/10.4236/jhepgc.2024.101027
[82]  Reissner, H. (1916) Über die eigengravitation des elektrischen feldes nach der einsteinschen theorie. Annalen der Physik, 355, 106-120.
https://doi.org/10.1002/andp.19163550905
[83]  Nordström, G. (1918) On the Energy of the Gravitation Field in Einstein’s Theory. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 20, 1238.
[84]  Kerr, R.P. (1963) Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Physical Review Letters, 11, 237-238.
https://doi.org/10.1103/PhysRevLett.11.237
[85]  Newman, E.T. and Janis, A.I. (1965) Note on the Kerr Spinning-Particle Metric. Journal of Mathematical Physics, 6, 915-917.
https://doi.org/10.1063/1.1704350
[86]  Haug, E.G. and Spavieri, G. (2023) Mass-Charge Metric in Curved Spacetime. International Journal of Theoretical Physics, 62, Article No. 248.
https://doi.org/10.1007/s10773-023-05503-9
[87]  Haug, E.G. and Spavieri, G. (2023) New Exact Solution to Einstein’s Field Equation Gives a New Cosmological Model.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413