全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

狭长受限空间内甲烷爆炸的认识研究
Recognition of Methane Explosions in Long and Narrow Confined Spaces

DOI: 10.12677/me.2024.122034, PP. 299-304

Keywords: 甲烷爆炸特性,障碍物,湍流,不同点火位置
Methane Explosion Characteristics
, Obstacles, Turbulence, Different Ignition Positions

Full-Text   Cite this paper   Add to My Lib

Abstract:

这篇综述考察了狭长受限空间内甲烷爆炸影响因素的现有知识。重点关注了各种障碍物、湍流、不同点火位置、初始点火能量对甲烷爆炸的影响。研究发现障碍物可能改变火焰传播路径和爆炸过程的动力学行为。其次,湍流结构的变化可能导致火焰传播速度、火焰形态和爆炸强度的显著变化。此外,初始点火能量作为另一个关注点,研究表明它对管内甲烷爆炸过程的发展和爆炸特性有着重要影响,其大小直接影响着爆炸的启动和发展过程。本文对文献中发现的各种调查进行了分析,旨在了解甲烷与空气混合引发的爆炸。
This review examines the current knowledge of the factors influencing methane explosions in narrow confined spaces. The effects of various obstacles, turbulence, different ignition positions, and initial ignition energy on methane explosions were focused on. It was found that obstacles may alter the flame propagation path and the kinetic behaviour of the explosion process. Secondly, changes in turbulence structure may lead to significant changes in flame propagation speed, flame morphology, and explosion intensity. In addition, the initial ignition energy, as another concern, has been shown to have a significant influence on the development and explosion characteristics of the methane explosion process in the tube, and its magnitude directly affects the initiation and development process of the explosion. In this paper, various investigations found in the literature have been analysed with the aim of understanding explosions initiated by methane-air mixing.

References

[1]  林柏泉, 周世宁, 张仁贵. 障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J]. 中国矿业大学学报, 1999, 28(2): 6-9.
[2]  Chapman, W.R. and Wheeler, R.V. (1926) The Propagation of Flame in Mixtures of Methane and Air. Part IV. The Effect of Restrictions in the Path of the Flame. Journal of the Chemical Society, 129, 2139-2147.
https://doi.org/10.1039/JR9262902139
[3]  张延炜, 徐景德, 胡洋, 等. 柔性障碍物对甲烷空气爆炸波激励作用的实验研究[J]. 爆炸与冲击, 2021, 41(5): 145-153.
[4]  邓浩鑫, 温小萍, 王发辉, 等. 对称障碍物条件下瓦斯爆炸火焰与压力波耦合作用研究[J]. 安全与环境学报, 2018, 18(1): 161-165.
[5]  王成, 回岩, 胡斌斌, 等. 障碍物形状对瓦斯爆炸火焰传播过程的影响[J]. 北京理工大学学报, 2015, 35(7): 661-665 676.
[6]  蔺照东, 李如江, 刘恩良, 等. 障碍物对瓦斯爆炸冲击波影响研究[J]. 中国安全生产科学技术, 2014, 10(2): 28-32.
[7]  尉存娟, 谭迎新, 袁宏甦. 水平管道内障碍物数量对瓦斯爆炸过程的影响研究[J]. 中国安全科学学报, 2012, 22(6): 60-64.
[8]  汪泉. 有机玻璃方管内瓦斯爆燃火焰传播特性研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2013.
[9]  韩蓉, 刘剑, 高科, 等. 密闭空间内障碍物对瓦斯爆炸传播影响研究[J]. 中国安全生产科学技术, 2018, 14(7): 61-66.
[10]  余明高, 刘磊, 郑凯, 等. 障碍物与管道壁面间距比对瓦斯爆炸传播特性的影响[J]. 中国安全生产科学技术, 2017, 13(5): 151-156.
[11]  Moen, I.O., Donato, M., Knystautas, R., et al. (1980) Flame Acceleration Due to Turbulence Produced by Obstacles. Combustion and Flame, 39, 21-32.
https://doi.org/10.1016/0010-2180(80)90003-6
[12]  Na'inna, A.M., Phylaktou, H.N. and Andrews, G.E. (2013) The Acceleration of Flames in Tube Explosions with Two Obstacles as a Function of the Obstacle Separation Distance. Journal of Loss Prevention in the Process Industries, 26, 1597-1603.
https://doi.org/10.1016/j.jlp.2013.08.003
[13]  Ciccarelli, G. and Dorofeev, S. (2008) Flame Acceleration and Transition to Detonation in Ducts. Progress in Energy & Combustion Science, 34, 499-550.
https://doi.org/10.1016/j.pecs.2007.11.002
[14]  Mcgarry, J.P. and Ahmed, K.A. (2017) Flame-Turbulence Interaction of Laminar Premixed Deflagrated Flames. Combustion and Flame, 176, 439-450.
https://doi.org/10.1016/j.combustflame.2016.11.002
[15]  Bychkov, V., Valiev, D. and Eriksson, L.E. (2008) Physical Mechanism of Ultrafast Flame Acceleration. Physical Review Letters, 101, Article ID: 164501.
https://doi.org/10.1103/PhysRevLett.101.164501
[16]  Zhang, K., Wang, Z., Ni, L., et al. (2017) Effect of One Obstacle on Methane-Air Explosion in Linked Vessels. Process Safety and Environmental Protection, 105, 217-223.
https://doi.org/10.1016/j.psep.2016.11.004
[17]  Zhou, Y., Li, Y., Jiang, H., et al. (2021) Investigations on Unconfined Large-Scale Methane Explosion with the Effects of Scale and Obstacles. Process Safety and Environmental Protection, 155, 1-10.
https://doi.org/10.1016/j.psep.2021.09.004
[18]  Wen, X., Yu, M., Ji, W., et al. (2015) Methane-Air Explosion Characteristics with Different Obstacle Configurations. International Journal of Mining Science and Technology, 25, 213-218.
https://doi.org/10.1016/j.ijmst.2015.02.008
[19]  Hall, R., et al. (2009) Effects of Position and Frequency of Obstacles on Turbulent Premixed Propagating Flames. Combustion and Flame, 156, 439-446.
https://doi.org/10.1016/j.combustflame.2008.08.002
[20]  刘磊, 宋双林, 葛欢, 等. 障碍物排列方式对甲烷/空气爆炸特性影响研究[J]. 能源与环保, 2022(3): 44.
[21]  Wan, S., et al. (2018) Influence of Obstacle Blockage on Methane/Air Explosion Characteristics Affected by Side Venting in a Duct. Journal of Loss Prevention in the Process Industries, 54, 281-288.
https://doi.org/10.1016/j.jlp.2018.05.003
[22]  李志锋, 余明高, 纪文涛, 等. 障碍物诱导瓦斯爆炸湍流火焰数值模拟[J]. 河南理工大学学报(自然科学版), 2015, 34(2): 167-170.
[23]  梁春利, 毕明树. 设置障碍物密闭容器内气体爆炸数值模拟[J]. 石油化工设备, 2005(6): 26-29.
[24]  王磊, 司荣军, 苗磊, 等. 障碍物压力反射特性对瓦斯爆炸传播影响的数值模拟研究[J]. 中国安全生产科学技术, 2020, 16(8): 106-112.
[25]  罗振敏, 吴刚. 圆柱体障碍物对密闭管道内瓦斯爆炸特性影响的数值模拟[J]. 安全与环境工程, 2020, 27(4): 189-194.
[26]  李烨. 障碍物对瓦斯爆炸冲击波传播影响的数值模拟[D]: [硕士学位论文]. 阜新: 辽宁工程技术大学, 2017.
[27]  师峥. 管道内预混可燃气体爆炸及其泄爆的数值模拟[D]: [硕士学位论文]. 太原: 中北大学, 2017.
[28]  王公忠, 张建华, 李登科, 等. 障碍物对预混火焰特性影响的大涡数值模拟[J]. 爆炸与冲击, 2017, 37(1): 68-76.
[29]  杨凡, 陶刚, 张礼敬, 等. 障碍物对气体爆炸压力场影响数值模拟[J]. 中国安全生产科学技术, 2013, 9(2): 59-63.
[30]  唐平, 蒋军成. 障碍物对采用泄爆管泄放气体爆炸影响的数值模拟[J]. 安全与环境学报, 2011, 11(6): 151-156.
[31]  吴兵, 张莉聪, 徐景德. 瓦斯爆炸运动火焰生成压力波的数值模拟[J]. 中国矿业大学学报, 2005(4): 423-426.
[32]  Chen, P., Li, Y., Huang, F., et al. (2016) Experimental and LES Investigation of Premixed Methane/Air Flame Propagating in a Chamber for Three Obstacle BR Configurations. Journal of Loss Prevention in the Process Industries, 41, 48-54.
https://doi.org/10.1016/j.jlp.2016.02.020
[33]  Coates, A.M., Mathias, D.L. and Cantwell, B.J. (2019) Numerical Investigation of the Effect of Obstacle Shape on Deflagration to Detonation Transition in a Hydrogen-Air Mixture. Combustion and Flame, 209, 278-290.
https://doi.org/10.1016/j.combustflame.2019.07.044
[34]  朱跃进, 董刚, 刘怡昕, 等. 激波诱导火焰变形、混合和燃烧的数值研究[J]. 爆炸与冲击, 2013, 33(4): 430-437.
[35]  朱跃进, 董刚, 范宝春. 受限空间内激波与火焰作用的三维计算[J]. 推进技术, 2012, 33(3): 405-411.
[36]  Rubtsov, N.M. (2016) The Modes of Gaseous Combustion. Springer International Publishing, Berlin.
https://doi.org/10.1007/978-3-319-25933-8
[37]  贾静, 苏霈洋. 掘进工作面障碍物对瓦斯爆炸影响的研究[J]. 山西科技, 2020, 35(6): 21-23 27.
[38]  Wang, X., Guo, P., Wang, Z., et al. (2021) Simulation of the Influence of Structural Parameters on Methane Explosion in Closed Vessels. IOP Conference Series Earth and Environmental Science, 766, Article ID: 012038.
https://doi.org/10.1088/1755-1315/766/1/012038
[39]  Li, Z., Chen, L., Yan, H., et al. (2021) Gas Explosions of Methane-Air Mixtures in a Large-Scale Tube. Fuel, 285, Article ID: 119239.
https://doi.org/10.1016/j.fuel.2020.119239
[40]  Wang, Q., Ma, H., Shen, Z., et al. (2013) Numerical Simulation of Premixed Methane-Air Flame Propagating Parameters in Square Tube with Different Solid Obstacles. Procedia Engineering, 62, 397-403.
https://doi.org/10.1016/j.proeng.2013.08.081
[41]  Jun, D., Cheng, P. and Hua, L.W. (2008) Experimental Study on Methane Explosion Property in Turbulent Flow. China Safety Science Journal (CSSJ), 18, 85-88.
[42]  Phylaktou, H.N. and Andrews, G.E. (1993) Gas Explosions in Linked Vessels. Journal of Loss Prevention in the Process Industries, 6, 15-19.
https://doi.org/10.1016/0950-4230(93)80015-E
[43]  郑立刚, 吕先舒, 郑凯, 等. 点火源位置对甲烷-空气爆燃超压特征的影响[J]. 化工学报, 2015, 66(7): 2749-2756.
[44]  Feng, C.G., Chen, L.S. and Qian, X.M. (2001) Influence of Ignition Location on Explosion Overpressure in Coal Mine Blind Tunnel. Journal of Safety and Environment, 1, 56-59.
[45]  Kindracki, J., Kobiera, A., Rarata, G., et al. (2007) Influence of Ignition Position and Obstacles on Explosion Development in Methane-Air Mixture in Closed Vessels. Journal of Loss Prevention in the Process Industries, 20, 551-561.
https://doi.org/10.1016/j.jlp.2007.05.010
[46]  Emami, S.D., Rajabi, M., Hassan, C.R., et al. (2013) Experimental Study on Premixed Hydrogen/Air and Hydrogen-Methane/Air Mixtures Explosion in 90 Degree Bend Pipeline. International Journal of Hydrogen Energy, 38, 14115-14120.
https://doi.org/10.1016/j.ijhydene.2013.08.056

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413