全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

鸢尾素与骨代谢相关性
Correlation between Irisin and Bone Metabolism

DOI: 10.12677/hjbm.2024.142026, PP. 240-245

Keywords: 鸢尾素,骨代谢,骨质疏松
Irisin
, Bone Metabolism, Osteoporosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

鸢尾素是一种由骨骼肌分泌的肌细胞因子,在骨代谢中起主要作用。大量的试验数据表明,鸢尾素可促进骨生成,保护骨细胞免受地塞米松诱导的细胞凋亡,防止骨和肌肉质量损失,并加速骨折愈合。在绝经后女性和老年男性中观察到血清鸢尾素水平降低,与骨质疏松症和骨折的风险增加相关。本片综述将从鸢尾素的来源以及和骨的生成和代谢,分析出鸢尾素与骨代谢之间的相关性。
Irisin is a myokine secreted by skeletal muscles and plays a major role in bone metabolism. A substantial body of experimental data suggests that irisin can promote bone formation, protect bone cells from dexamethasone-induced apoptosis, prevent the loss of bone and muscle mass, and accelerate fracture healing. Lower serum levels of irisin have been observed in postmenopausal women and elderly men, associated with an increased risk of osteoporosis and fractures. This review will cover the origins of irisin as well as its role in bone formation and metabolism, analyzing the relationship between irisin and bone metabolism.

References

[1]  Bostr?m, P., Wu, J., Jedrychowski, M.P., Korde, A., Ye, L., Lo, J.C., Rasbach, K.A., Bostr?m, E.A., Choi, J.H., Long, J.Z., Kajimura, S., Zingaretti, M.C., Vind, B.F., Tu, H., Cinti, S., H?jlund, K., Gygi, S.P. and Spiegelman, B.M. (2012) A PGC1-α-Dependent Myokine That Drives Brown-Fat-Like Development of White Fat and Thermogenesis. Nature, 481, 463-468.
https://doi.org/10.1038/nature10777
[2]  Aydin, S. (2014) Three New Players in Energy Regulation: Preptin, Adropin and Irisin. Peptides, 56, 94-110.
https://doi.org/10.1016/j.peptides.2014.03.021
[3]  Li, X., Duan, H., Liu, Q., Umar, M., Luo, W., Yang, X., Zhu, J. and Li, M., (2019) Construction of a Pichia Pastoris Strain Efficiently Secreting Irisin and Assessment of Its Bioactivity in HepG2 Cells. International Journal of Biological Macromolecules, 124, 60-70.
https://doi.org/10.1016/j.ijbiomac.2018.11.092
[4]  Huh, J.Y., Mougios, V., Kabasakalis, A., Fatouros, I., Siopi, A., Douroudos, I.I., Filippaios, A., Panagiotou, G., Park, K.H. and Mantzoros, C.S. (2014) Exercise-Induced Irisin Secretion Is Independent of Age or Fitness Level and Increased Irisin May Directly Modulate Muscle Metabolism through AMPK Activation. The Journal of Clinical Endocrinology and Metabolism, 99, E2154-E2161.
https://doi.org/10.1210/jc.2014-1437
[5]  Jodeiri Farshbaf, M. and Alvi?a, K. (2021) Multiple Roles in Neuroprotection for the Exercise Derived Myokine Irisin. Frontiers in Aging Neuroscience, 13, Article 649929.
https://doi.org/10.3389/fnagi.2021.649929
[6]  Piya, M.K., Harte, A.L., Sivakumar, K., Tripathi, G., Voyias, P.D., James, S., Sabico, S., Al-Daghri, N.M., Saravanan, P., Barber, T.M., Kumar, S., Vatish, M. and McTernan, P.G. (2014) The Identification of Irisin in Human Cerebrospinal Fluid: Influence of Adiposity, Metabolic Markers, and Gestational Diabetes. American Journal of Physiology: Endocrinology and Metabolism, 306, E512-E518.
https://doi.org/10.1152/ajpendo.00308.2013
[7]  Erickson, K.I., Weinstein, A.M. and Lopez, O.L. (2012) Physical Activity, Brain Plasticity, and Alzheimer’s Disease. Archives of Medical Research, 43, 615-621.
https://doi.org/10.1016/j.arcmed.2012.09.008
[8]  Panati, K., Suneetha, Y. and Narala, V.R. (2016) Irisin/FNDC5—An Updated Review. European Review for Medical and Pharmacological Sciences, 20, 689-697.
[9]  Waseem, R., Shamsi, A., Mohammad, T., Alhumaydhi, F.A., Kazim, S.N., Hassan, M.I., Ahmad, F. and Islam, A. (2021) Multispectroscopic and Molecular Docking Insight into Elucidating the Interaction of Irisin with Rivastigmine Tartrate: A Combinational Therapy Approach to Fight Alzheimer’s Disease. ACS Omega, 6, 7910-7921.
https://doi.org/10.1021/acsomega.1c00517
[10]  Wang, S. and Pan, J. (2016) Irisin Ameliorates Depressive-Like Behaviors in Rats by Regulating Energy Metabolism. Biochemical and Biophysical Research Communications, 474, 22-28.
https://doi.org/10.1016/j.bbrc.2016.04.047
[11]  Chen, Z., Zhang, Y., Zhao, F., Yin, C., Yang, C., Wang, X., Wu, Z., Liang, S., Li, D., Lin, X., Tian, Y., Hu, L., Li, Y. and Qian, A. (2020) Recombinant Irisin Prevents the Reduction of Osteoblast Differentiation Induced by Stimulated Microgravity through Increasing β-Catenin Expression. International Journal of Molecular Sciences, 21, Article 1259.
https://doi.org/10.3390/ijms21041259
[12]  Colaianni, G., Cuscito, C., Mongelli, T., Pignataro, P., Buccoliero, C., Liu, P., Lu, P., Sartini, L., Di Comite, M., Mori, G., Di Benedetto, A., Brunetti, G., Yuen, T., Sun, L., Reseland, J. E., Colucci, S., New, M.I., Zaidi, M., Cinti, S. and Grano, M., (2015) The Myokine Irisin Increases Cortical Bone Mass. Proceedings of the National Academy of Sciences of the United States of America, 112, 12157-12162.
https://doi.org/10.1073/pnas.1516622112
[13]  Clarke, B. (2008) Normal Bone Anatomy and Physiology. Clinical Journal of the American Society of Nephrology, 3, S131-S139.
https://doi.org/10.2215/CJN.04151206
[14]  Alford, A.I., Kozloff, K.M. and Hankenson, K.D. (2015) Extracellular Matrix Networks in Bone Remodeling. The International Journal of Biochemistry & Cell Biology, 65, 20-31.
https://doi.org/10.1016/j.biocel.2015.05.008
[15]  Morgan, E.F., Mason, Z.D., Chien, K.B., Pfeiffer, A.J., Barnes, G.L., Einhorn, T.A. and Gerstenfeld, L.C. (2009) Micro-Computed Tomography Assessment of Fracture Healing: Relationships among Callus Structure, Composition, and Mechanical Function. Bone, 44, 335-344.
https://doi.org/10.1016/j.bone.2008.10.039
[16]  Feng, X. (2009) Chemical and Biochemical Basis of Cell-Bone Matrix Interaction in Health and Disease. Current Chemical Biology, 3, 189-196.
https://doi.org/10.2174/187231309788166398
[17]  Zhou, R., Guo, Q., Xiao, Y., Guo, Q., Huang, Y., Li, C. and Luo, X. (2021) Endocrine Role of Bone in the Regulation of Energy Metabolism. Bone Research, 9, Article No. 25.
https://doi.org/10.1038/s41413-021-00142-4
[18]  Shao, J., Wang, Z., Yang, T., Ying, H., Zhang, Y. and Liu, S. (2015) Bone Regulates Glucose Metabolism as an Endocrine Organ through Osteocalcin. International Journal of Endocrinology, 2015, Article ID: 967673.
https://doi.org/10.1155/2015/967673
[19]  Hadjidakis, D.J. and Androulakis, I.I. (2006) Bone Remodeling. Annals of the New York Academy of Sciences, 1092, 385-396.
https://doi.org/10.1196/annals.1365.035
[20]  Weaver, C.M., Gordon, C.M., Janz, K.F., Kalkwarf, H.J., Lappe, J.M., Lewis, R., O’Karma, M., Wallace, T.C. and Zemel, B.S. (2016) The National Osteoporosis Foundation’s Position Statement on Peak Bone Mass Development and Lifestyle Factors: A Systematic Review and Implementation Recommendations. Osteoporosis International, 27, 1281-1386.
https://doi.org/10.1007/s00198-015-3440-3
[21]  Bonjour, J.P., Chevalley, T., Ferrari, S. and Rizzoli, R. (2009) The Importance and Relevance of Peak Bone Mass in the Prevalence of Osteoporosis. Salud Publica De Mexico, 51, S5-S17.
https://doi.org/10.1590/S0036-36342009000700004
[22]  Khajuria, D.K., Razdan, R. and Mahapatra, D.R. (2011) Drugs for the Management of Osteoporosis: A Review. Revista Brasileira De Reumatologia, 51, 365-371.
https://doi.org/10.1590/S0482-50042011000400008
[23]  Curtis, E., Litwic, A., Cooper, C. and Dennison, E. (2015) Determinants of Muscle and Bone Aging. Journal of Cellular Physiology, 230, 2618-2625.
https://doi.org/10.1002/jcp.25001
[24]  Genant, H.K., Cooper, C., Poor, G., Reid, I., Ehrlich, G., Kanis, J., Nordin, B.E., Barrett-Connor, E., Black, D., Bonjour, J.P., Dawson-Hughes, B., Delmas, P.D., Dequeker, J., Ragi Eis, S., Gennari, C., Johnell, O., Johnston Jr., C.C., Lau, E.M., Liberman, U.A., Lindsay, R., Martin, T.J., Masri, B., Mautalen, C.A., Meunier, P.J., Khaltaev, N., et al. (1999) Interim Report and Recommendations of the World Health Organization Task-Force for Osteoporosis. Osteoporosis International, 10, 259-264.
https://doi.org/10.1007/s001980050224
[25]  Lewiecki, E.M. and Watts, N.B. (2009) New Guidelines for the Prevention and Treatment of Osteoporosis. Southern Medical Journal, 102, 175-179.
https://doi.org/10.1097/SMJ.0b013e31818be99b
[26]  Pisani, P., Renna, M.D., Conversano, F., Casciaro, E., Di Paola, M., Quarta, E., Muratore, M. and Casciaro, S. (2016) Major Osteoporotic Fragility Fractures: Risk Factor Updates and Societal Impact. World Journal of Orthopedics, 7, 171-181.
https://doi.org/10.5312/wjo.v7.i3.171
[27]  Kuo, T.R. and Chen, C.H. (2017) Bone Biomarker for the Clinical Assessment of Osteoporosis: Recent Developments and Future Perspectives. Biomarker Research, 5, Article No. 18.
https://doi.org/10.1186/s40364-017-0097-4
[28]  Lo Cascio, V., Bertoldo, F., Gambaro, G., Gasperi, E., Furlan, F., Colapietro, F., Lo Cascio, C. and Campagnola, M. (1999) Urinary Galactosyl-Hydroxylysine in Postmenopausal Osteoporotic Women: A Potential Marker of Bone Fragility. Journal of Bone and Mineral Research, 14, 1420-1424.
https://doi.org/10.1359/jbmr.1999.14.8.1420
[29]  Forsprecher, J., Wang, Z., Goldberg, H.A. and Kaartinen, M.T. (2011) Transglutaminase-Mediated Oligomerization Promotes Osteoblast Adhesive Properties of Osteopontin and Bone Sialoprotein. Cell Adhesion & Migration, 5, 65-72.
https://doi.org/10.4161/cam.5.1.13369
[30]  Holm, E., Gleberzon, J.S., Liao, Y., S?rensen, E.S., Beier, F., Hunter, G.K. and Goldberg, H.A. (2014) Osteopontin Mediates Mineralization and Not Osteogenic Cell Development in Vitro. The Biochemical Journal, 464, 355-364.
https://doi.org/10.1042/BJ20140702
[31]  Si, J., Wang, C., Zhang, D., Wang, B. and Zhou, Y. (2020) Osteopontin in Bone Metabolism and Bone Diseases. Medical Science Monitor, 26, e919159.
https://doi.org/10.12659/MSM.919159
[32]  Palermo, A., Strollo, R., Maddaloni, E., Tuccinardi, D., D’Onofrio, L., Briganti, S.I., Defeudis, G., De Pascalis, M., Lazzaro, M.C., Colleluori, G., Manfrini, S., Pozzilli, P. and Napoli, N. (2015) Irisin Is Associated with Osteoporotic Fractures Independently of Bone Mineral Density, Body Composition or Daily Physical Activity. Clinical Endocrinology, 82, 615-619.
https://doi.org/10.1111/cen.12672
[33]  Qiao, X., Nie, Y., Ma, Y., Chen, Y., Cheng, R., Yin, W., Hu, Y., Xu, W. and Xu, L. (2016) Irisin Promotes Osteoblast Proliferation and Differentiation via Activating the MAP Kinase Signaling Pathways. Scientific Reports, 6, Article No. 18732.
https://doi.org/10.1038/srep18732
[34]  Colaianni, G., Cuscito, C., Mongelli, T., Oranger, A., Mori, G., Brunetti, G., Colucci, S., Cinti, S. and Grano, M. (2014) Irisin Enhances Osteoblast Differentiation in Vitro. International Journal of Endocrinology, 2014, Article ID: 902186.
https://doi.org/10.1155/2014/902186
[35]  Kim, H., Wrann, C.D., Jedrychowski, M., Vidoni, S., Kitase, Y., Nagano, K., Zhou, C., Chou, J., Parkman, V.A., Novick, S.J., Strutzenberg, T.S., Pascal, B.D., Le, P.T., Brooks, D.J., Roche, A.M., Gerber, K.K., Mattheis, L., Chen, W., Tu, H., Bouxsein, M.L., Griffin, P.R., Baron, R., Rosen, C.J., Bonewald, L.F. and Spiegelman, B.M. (2018) Irisin Mediates Effects on Bone and Fat via αV Integrin Receptors. Cell, 175, 1756-1768.E17.
https://doi.org/10.1016/j.cell.2018.10.025
[36]  Estell, E.G., Le, P.T., Vegting, Y., Kim, H., Wrann, C., Bouxsein, M.L., Nagano, K., Baron, R., Spiegelman, B.M. and Rosen, C.J. (2020) Irisin Directly Stimulates Osteoclastogenesis and Bone Resorption in Vitro and in Vivo. eLife, 9, e58172.
https://doi.org/10.7554/eLife.58172
[37]  Serbest, S., Tiftik?i, U., Tosun, H.B. and K?sa, ü. (2017) The Irisin Hormone Profile and Expression in Human Bone Tissue in the Bone Healing Process in Patients. Medical Science Monitor, 23, 4278-4283.
https://doi.org/10.12659/MSM.906293
[38]  Singhal, V., Lawson, E.A., Ackerman, K.E., Fazeli, P.K., Clarke, H., Lee, H., Eddy, K., Marengi, D.A., Derrico, N.P., Bouxsein, M.L. and Misra, M. (2014) Irisin Levels Are Lower in Young Amenorrheic Athletes Compared with Eumenorrheic Athletes and Non-Athletes and Are Associated with Bone Density and Strength Estimates. PLOS ONE, 9, e100218.
https://doi.org/10.1371/journal.pone.0100218
[39]  Zhu, X., Li, X., Wang, X., Chen, T., Tao, F., Liu, C., Tu, Q., Shen, G. and Chen, J.J. (2021) Irisin Deficiency Disturbs Bone Metabolism. Journal of Cellular Physiology, 236, 664-676.
https://doi.org/10.1002/jcp.29894

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413