全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

辅因子NAD 再生方法的研究进展
Advances in Cofactor NAD Regeneration Methods

DOI: 10.12677/hjbm.2024.142029, PP. 260-266

Keywords: 生物催化,NAD 再生
Biocatalysis
, NAD Regeneration

Full-Text   Cite this paper   Add to My Lib

Abstract:

辅因子在酶进行高效催化反应中扮演着不可或缺的角色,辅因子再生是指将在氧化还原酶催化过程中消耗的氧化型辅酶或还原型辅酶之间进行相互转化,以维持辅酶剂量水平的相对稳定,从而不断地促进底物分子朝着目的产物转化。鉴于辅因子的高成本、化学计量使用和物理不稳定性,合适的辅因子再生方法对于实际应用至关重要。因此,越来越多的研究人员着力开发多种高效经济的辅因子再生方法,以期更好地提高催化反应效率。本文主要对目前辅因子NAD 再生方法的研究进展进行综述,分析讨论各种方法的特点和研究现状,为辅因子在工业生产及医药应用领域的研究提供参考。
Cofactors play an indispensable role in the efficient catalytic reactions carried out by enzymes, and cofactor regeneration refers to the interconversion of oxidized or reduced cofactors consumed in the catalytic process of redox enzymes to maintain a relatively stable coenzyme dose level, thus continuously facilitating the conversion of substrate molecules toward the target products. Given the high cost, stoichiometric use and physical instability of cofactors, suitable cofactor regeneration methods are crucial for practical applications. Therefore, more and more researchers are focusing on the development of various efficient and economical cofactor regeneration methods in order to better improve the efficiency of catalytic reactions. In this paper, we mainly review the current research progress of cofactor NAD regeneration methods, analyze and discuss the characteristics and current research status of various methods, and provide a reference for the research of cofactor in industrial production and pharmaceutical applications.

References

[1]  Monti, D., Ottolina, G., Carrea, G., et al. (2011) Redox Reactions Catalyzed by Isolated Enzymes. Chemical Reviews, 111, 4111-4140.
https://doi.org/10.1021/cr100334x
[2]  Ali, I., Ullah, N., McArthur, M.A., et al. (2018) Direct Electrochemical Regeneration of Enzymatic Cofactor 1,4-NADH on a Cathode Composed of Multi-Walled Carbon Nanotubes Decorated with Nickel Nanoparticles. The Canadian Journal of Chemical Engineering, 96, 68-73.
https://doi.org/10.1002/cjce.22886
[3]  Wang, X., Saba, T., Yiu, H.H.P., et al. (2017) Cofactor NAD(P)H Regeneration Inspired by Heterogeneous Pathways. Chem, 2, 621-654.
https://doi.org/10.1016/j.chempr.2017.04.009
[4]  Wu, H., Tian, C., Song, X., et al. (2013) Methods for the Regeneration of Nicotinamide Coenzymes. Green Chemistry, 15, 1773-1789.
https://doi.org/10.1039/c3gc37129h
[5]  Wang, X. and Yiu, H.H.P. (2016) Heterogeneous Catalysis Mediated Cofactor NADH Regeneration for Enzymatic Reduction. ACS Catalysis, 6, 1880-1886.
https://doi.org/10.1021/acscatal.5b02820
[6]  Goldberg, K., Schroer, K., Lütz, S., et al. (2007) Biocatalytic Ketone Reduction—A Powerful Tool for the Production of Chiral Alcohols—Part I: Processes with Isolated Enzymes. Applied Microbiology and Biotechnology, 76, 237-248.
https://doi.org/10.1007/s00253-007-1002-0
[7]  Raunio, R. and Lilius, E.M. (1971) Effect of Dithionite on Enzyme Activities in Vivo. Enzymologia, 40, 360-368.
[8]  Lee, Y.S., Gerulskis, R. and Minteer, S.D. (2022) Advances in Electrochemical Cofactor Regeneration: Enzymatic and Non-Enzymatic Approaches. Current Opinion in Biotechnology, 73, 14-21.
https://doi.org/10.1016/j.copbio.2021.06.013
[9]  Wichmann, R. and Vasic-Racki, D. (2005) Cofactor Regeneration at the Lab Scale. In: Kragl, U., Ed., Technology Transfer in Biotechnology: From Lab to Industry to Production, Springer, Berlin, 225-260.
https://doi.org/10.1007/b98911
[10]  Ali, I., Gill, A. and Omanovic, S. (2012) Direct Electrochemical Regeneration of the Enzymatic Cofactor 1,4-NADH Employing Nano-Patterned Glassy Carbon/Pt and Glassy Carbon/Ni Electrodes. Chemical Engineering Journal, 188, 173-180.
https://doi.org/10.1016/j.cej.2012.02.005
[11]  Torres Pazmi?o, D.E., Winkler, M., Glieder, A., et al. (2010) Monooxygenases as Biocatalysts: Classification, Mechanistic Aspects and Biotechnological Applications. Journal of Biotechnology, 146, 9-24.
https://doi.org/10.1016/j.jbiotec.2010.01.021
[12]  Wichmann, R. and Vasic-Racki, D. (2005) Cofactor Regeneration at the Lab Scale. In: Kragl, U., Ed., Technology Transfer in Biotechnology, Springer, Berlin, 225-260.
https://doi.org/10.1007/b98911
[13]  McQuillan, R.V., Stevens, G.W. and Mumford, K.A. (2018) The Electrochemical Regeneration of Granular Activated Carbons: A Review. Journal of Hazardous Materials, 355, 34-49.
https://doi.org/10.1016/j.jhazmat.2018.04.079
[14]  Narbaitz, R.M. and Cen, J. (1994) Electrochemical Regeneration of Granular Activated Carbon. Water Research, 28, 1771-1778.
https://doi.org/10.1016/0043-1354(94)90250-X
[15]  Mohammed, F.M., Roberts, E.P.L., Hill, A., et al. (2011) Continuous Water Treatment by Adsorption and Electrochemical Regeneration. Water Research, 45, 3065-3074.
https://doi.org/10.1016/j.watres.2011.03.023
[16]  Damian, A. and Omanovic, S. (2006) Electrochemical Reduction of NAD on a Polycrystalline Gold Electrode. Journal of Molecular Catalysis A: Chemical, 253, 222-233.
https://doi.org/10.1016/j.molcata.2006.03.020
[17]  Kim, Y.H. and Yoo, Y.J. (2009) Regeneration of the Nicotinamide Cofactor Using a Mediator-Free Electrochemical Method with a Tin Oxide Electrode. Enzyme and Microbial Technology, 44, 129-134.
https://doi.org/10.1016/j.enzmictec.2008.10.019
[18]  Immanuel, S., Sivasubramanian, R., Gul, R., et al. (2020) Recent Progress and Perspectives on Electrochemical Regeneration of Reduced Nicotinamide Adenine Dinucleotide (NADH). ChemistryAn Asian Journal, 15, 4256-4270.
https://doi.org/10.1002/asia.202001035
[19]  Kim, J.H., Lee, M., Lee, J.S., et al. (2012) Self-Assembled Light-Harvesting Peptide Nanotubes for Mimicking Natural Photosynthesis. Angewandte Chemie International Edition, 51, 517-520.
https://doi.org/10.1002/anie.201103244
[20]  Shi, Q., Yang, D., Jiang, Z., et al. (2006) Visible-Light Photocatalytic Regeneration of NADH Using P-Doped TiO2 Nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 43, 44-48.
https://doi.org/10.1016/j.molcatb.2006.06.005
[21]  Liao, H.X., Jia, H.Y., Dai, J.R., et al. (2021) Bioinspired Cooperative Photobiocatalytic Regeneration of Oxidized Nicotinamide Cofactors for Catalytic Oxidations. ChemSusChem, 14, 1687-1691.
https://doi.org/10.1002/cssc.202100184
[22]  Lee, S.H., Nam, D.H. and Park, C.B. (2009) Screening Xanthene Dyes for Visible Light-Driven Nicotinamide Adenine Dinucleotide Regeneration and Photoenzymatic Synthesis. Advanced Synthesis & Catalysis, 351, 2589-2594.
https://doi.org/10.1002/adsc.200900547
[23]  Taglieber, A., Schulz, F., Hollmann, F., et al. (2008) Light-Driven Biocatalytic Oxidation and Reduction Reactions: Scope and Limitations. ChemBioChem, 9, 565-572.
https://doi.org/10.1002/cbic.200700435
[24]  Wang, G.-L., Xu, J.-J. and Chen, H.-Y. (2009) Dopamine Sensitized Nanoporous TiO2 Film on Electrodes: Photoelectrochemical Sensing of NADH under Visible Irradiation. Biosensors and Bioelectronics, 24, 2494-2498.
https://doi.org/10.1016/j.bios.2008.12.031
[25]  Hambourger, M., Kodis, G., Vaughn, M.D., et al. (2009) Solar Energy Conversion in a Photoelectrochemical Biofuel Cell. Dalton Transactions, 45, 9979-9989.
https://doi.org/10.1039/b912170f
[26]  Liao, Q., Liu, W. and Meng, Z. (2022) Strategies for Overcoming the Limitations of Enzymatic Carbon Dioxide Reduction. Biotechnology Advances, 60, Article ID: 108024.
https://doi.org/10.1016/j.biotechadv.2022.108024
[27]  Uppada, V., Bhaduri, S. and Noronha, S.B. (2014) Cofactor Regeneration—An Important Aspect of Biocatalysis. Current Science, 106, 946-957.
[28]  Hummel, W. (1999) Large-Scale Applications of NAD(P)-Dependent Oxidoreductases: Recent Developments. Trends in Biotechnology, 17, 487-492.
https://doi.org/10.1016/S0167-7799(98)01207-4
[29]  Marpani, F., Pinelo, M. and Meyer, A.S. (2017) Enzymatic Conversion of CO2 to CH3OH via Reverse Dehydrogenase Cascade Biocatalysis: Quantitative Comparison of Efficiencies of Immobilized Enzyme Systems. BioChemical Engineering Journal, 127, 217-228.
https://doi.org/10.1016/j.bej.2017.08.011
[30]  Weckbecker, A., Gr?ger, H. and Hummel, W. (2010) Regeneration of Nicotinamide Coenzymes: Principles and Applications for the Synthesis of Chiral Compounds. In: Wittmann, C. and Krull, R., Eds., Biosystems Engineering I: Creating Superior Biocatalysts, Springer, Berlin, 195-242.
https://doi.org/10.1007/10_2009_55
[31]  Riebel, B.R., Gibbs, P.R., Wellborn, W.B., et al. (2002) Cofactor Regeneration of NAD from NADH: Novel Water—Forming NADH Oxidases. Advanced Synthesis & Catalysis, 344, 1156-1168.
[32]  Shah, S., Agera, R., Sharma, P., et al. (2018) Development of Biotransformation Process for Asymmetric Reduction with Novel Anti-Prelog NADH-Dependent Alcohol Dehydrogenases. Process Biochemistry, 70, 71-78.
https://doi.org/10.1016/j.procbio.2018.04.016
[33]  Peng, T., Tian, J., Zhao, Y., et al. (2022) Multienzyme Redox System with Cofactor Regeneration for Cyclic Deracemization of Sulfoxides. Angewandte Chemie International Edition in English, 61, E202209272.
https://doi.org/10.1002/anie.202209272
[34]  Rehn, G., Pedersen, A.T. and Woodley, J.M. (2016) Application of NAD(P)H Oxidase for Cofactor Regeneration in Dehydrogenase Catalyzed Oxidations. Journal of Molecular Catalysis B: Enzymatic, 134, 331-339.
https://doi.org/10.1016/j.molcatb.2016.09.016
[35]  Kratzer, R., Woodley, J.M. and Nidetzky, B. (2015) Rules for Biocatalyst and Reaction Engineering to Implement Effective, NAD(P)H-Dependent, Whole Cell Bioreductions. Biotechnology Advances, 33, 1641-1652.
https://doi.org/10.1016/j.biotechadv.2015.08.006
[36]  Wu, S., Snajdrova, R., Moore, J.C., et al. (2021) Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angewandte Chemie International Edition, 60, 88-119.
https://doi.org/10.1002/anie.202006648
[37]  Wang, Z., Sundara Sekar, B. and Li, Z. (2021) Recent Advances in Artificial Enzyme Cascades for the Production of Value-Added Chemicals. Bioresource Technology, 323, Article ID: 124551.
https://doi.org/10.1016/j.biortech.2020.124551

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413