全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肺腺癌动态5节点ceRNA调控网络预测及机理分析
Predictive and Mechanistic Analysis of Dynamic 5-Node ceRNA Regulatory Network in Lung Adenocarcinoma

DOI: 10.12677/hjbm.2024.142030, PP. 267-277

Keywords: 生物信息学,ceRNA,调控网络,LUAD
Bioinformatics
, ceRNA, Regulatory Network, LUAD

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:构建肺腺癌发生发展过程中的动态五节点ceRNA调控网络,挖掘核心基因,为肺腺癌诊断及预后提供新思路。方法:从TCGA及GEO数据库获得肺腺癌mRNA、lncRNA、miRNA、circRNA、TF表达数据,将患者样本根据临床分期分为癌旁样本、早期样本(stage I期)、晚期样本(stage II、III、IV期),并将癌旁与早期、早期与晚期分别进行差异分析,将两组差异结果取交集,基于ChipBase、HOCOMOCO V11、AnimalTFDB、GTRD、TransmiR、TRRUST、CircBank、Starbase、miR2Disease、miRecords、miRTarBase和TarBase、LncBase、LncLocator数据库获得调控关系对,构建五节点ceRNA调控网络,对网络中的靶基因进行GO富集以及构建PPI网络挖掘核心基因。结果:构建了随分期动态变化的LUAD 5节点ceRNA调控网络,网络中的靶基因主要富集在脂肪酸代谢和突触成熟等生物过程中,最后获得与肺腺癌发生发展有关的8个核心基因NEFL、RBP4、FGA、SLC2A1、ALB、AFP、SLC7A5、DKK1。结论:调控网络中靶基因富集的相关通路以及8个核心基因NEFL、RBP4、FGA、SLC2A1、ALB、AFP、SLC7A5、DKK1为肺腺癌发生发展过程的机制分析、诊断及预后提供新思路。
Objective: To construct a dynamic 5-node ceRNA regulatory network during the development of lung adenocarcinoma, to mine the core genes, and to provide new ideas for lung adenocarcinoma diagnosis and prognosis. Methods: Lung adenocarcinoma mRNA, lncRNA, miRNA, circRNA and TF expression data were obtained from TCGA and GEO databases, and the patient samples were divided into paraneoplastic samples, early samples (stage I), and advanced samples (stage II, III, IV) according to the clinical staging and the differences between the paraneoplastic and the early, early and the late stage were analyzed separately, and the differences between the two groups were analyzed. The results were taken as intersection, based on ChipBase, HOCOMOCO V11, AnimalTFDB, GTRD, TransmiR, TRRUST, CircBank, Starbase, miR2Disease, miRecords, miRTarBase, and TarBase, LncBase, LncLocator database to obtain regulatory pairs, construct 5-node ceRNA regulatory network, GO enrichment of target genes in the network as well as construction of PPI network to mine core genes. Results: A LUAD 5-node ceRNA regulatory network that changes dynamically with staging was constructed, and the target genes in the network were mainly enriched in biological processes such as fatty acid metabolism and synaptic maturation, and finally eight core genes related to lung adenocarcinoma development were obtained, NEFL, RBP4, FGA, SLC2A1, ALB, AFP, SLC7A5, and DKK1. Conclusion: The pathways involved in the enrichment of target genes in the regulatory network, as well as the eight core genes NEFL, RBP4, FGA, SLC2A1, ALB, AFP, SLC7A5, and DKK1, provide new insights for the mechanism analysis, diagnosis, and prognosis of lung adenocarcinoma.

References

[1]  Torre, L.A., Siegel, R.L. and Jemal, A. (2016) Lung Cancer Statistics. In: Ahmad, A. and Gadgeel, S., Eds., Lung Cancer and Personalized Medicine, Springer, Berlin, 1-19.
https://doi.org/10.1007/978-3-319-24223-1_1
[2]  Wu, C., Xu, B., Zhou, Y., Ji, M., Zhang, D., Jiang, J. and Wu, C. (2016) Correlation between Serum IL-1β and MiR-144-3p as Well as Their Prognostic Values in LUAD and LUSC Patients. Oncotarget, 7, 85876-85887.
https://doi.org/10.18632/oncotarget.13042
[3]  Wang, Z., Zhang, J., Shi, S., Ma, H., Wang, D., Zuo, C., Zhang, Q. and Lian, C. (2023) Predicting Lung Adenocarcinoma Prognosis, Immune Escape, and Pharmacomic Profile from Arginine and Proline-Related Genes. Scientific Reports, 13, Article No. 15198.
https://doi.org/10.1038/s41598-023-42541-z
[4]  Wu, K., House, L., Liu, W. and Cho, W.C.S. (2012) Personalized Targeted Therapy for Lung Cancer. International Journal of Molecular Sciences, 13, 11471-11496.
https://doi.org/10.3390/ijms130911471
[5]  Su, K., Wang, N., Shao, Q., Liu, H., Zhao, B. and Ma, S. (2021) The Role of a CeRNA Regulatory Network Based on LncRNA MALAT1 Site in Cancer Progression. Biomedicine & Pharmacotherapy, 137, Article ID: 111389.
https://doi.org/10.1016/j.biopha.2021.111389
[6]  Salmena, L., Poliseno, L., Tay, Y., Kats, L. and Pandolfi, P.P. (2011) A CeRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell, 146, 353-358.
https://doi.org/10.1016/j.cell.2011.07.014
[7]  Morita, K., Suzuki, K., Maeda, S., et al. (2017) Genetic Regulation of the RUNX Transcription Factor Family Has Antitumor Effects. The Journal of Clinical Investigation, 127, 2815-2828.
https://doi.org/10.1172/JCI91788
[8]  Le, T.D., Liu, L., Zhang, J., Liu, B. and Li, J. (2015) From MiRNA Regulation to MiRNA-TF Co-Regulation: Computational Approaches and Challenges. Briefings in Bioinformatics, 16, 475-496.
https://doi.org/10.1093/bib/bbu023
[9]  Gurung, R., Masood, M., Singh, P., Jha, P., Sinha, A., Ajmeriya, S., Sharma, M., Dohare, R. and Haque, M.M. (2024) Uncovering the Role of Aquaporin and Chromobox Family Members as Potential Biomarkers in Head and Neck Squamous Cell Carcinoma via Integrative Multiomics and in Silico Approach. Journal of Applied Genetics.
https://doi.org/10.1007/s13353-024-00843-6
[10]  Alsayed, R., Sheikhan, K., Alam, M.A., Buddenkotte, J., Steinhoff, M., Uddin, S. and Ahmad, A. (2023) Epigenetic Programing of Cancer Stemness by Transcription Factors-Non-Coding RNAs Interactions. Seminars in Cancer Biology, 92, 74-83.
https://doi.org/10.1016/j.semcancer.2023.04.005
[11]  Vinchure, O.S. and Kulshreshtha, R. (2021) MiR-490: A Potential Biomarker and Therapeutic Target in Cancer and Other Diseases. Journal of Cellular Physiology, 236, 3178-3193.
https://doi.org/10.1002/jcp.30119
[12]  Giannareas, N., Zhang, Q., Yang, X., et al. (2022) Extensive Germline-Somatic Interplay Contributes to Prostate Cancer Progression through HNF1B Co-Option of TMPRSS2-ERG. Nature Communications, 13, Article No. 7320.
https://doi.org/10.1038/s41467-022-34994-z
[13]  Wang, H., Li, J., Wang, S., et al. (2021) Contribution of Structural Accessibility to the Cooperative Relationship of TF-LncRNA in Myopia. Briefings in Bioinformatics, 22, bbab082.
https://doi.org/10.1093/bib/bbab082
[14]  Zhang, X., Liang, Z., Zhang, Y., Dai, K., Zhu, M., Wang, J. and Hu, X. (2020) Comprehensive Analysis of Long Non-Coding RNAs Expression Pattern in the Pathogenesis of Pulmonary Tuberculosis. Genomics, 112, 1970-1977.
https://doi.org/10.1016/j.ygeno.2019.11.009
[15]  Tong, Z., Cui, Q., Wang, J. and Zhou, Y. (2019) TransmiR V2.0: An Updated Transcription Factor-MicroRNA Regulation Database. Nucleic Acids Research, 47, D253-D258.
https://doi.org/10.1093/nar/gky1023
[16]  Terekhanova, N.V., Karpova, A., Liang, W.W., et al. (2023) Epigenetic Regulation during Cancer Transitions across 11 Tumour Types. Nature, 623, 432-441.
https://doi.org/10.1038/s41586-023-06682-5
[17]  Ding, D., Xu, C., Zhang, J., et al. (2024) Revealing Underlying Regulatory Mechanisms of LINC00313 in Osimertinib-Resistant LUAD Cells by CeRNA Network Analysis. Translational Oncology, 43, Article ID: 101895.
https://doi.org/10.1016/j.tranon.2024.101895
[18]  Wei, X., Yi, X., Liu, J., Sui, X., Li, L., Li, M., Lv, H. and Yi, H. (2024) Circ-Phkb Promotes Cell Apoptosis and Inflammation in LPS-Induced Alveolar Macrophages via the TLR4/MyD88/NF-KB/CCL2 Axis. Respiratory Research, 25, Article No. 62.
https://doi.org/10.1186/s12931-024-02677-6
[19]  Zhang, C., Yu, Z., Yang, S., Liu, Y., Song, J., Mao, J., Li, M. and Zhao, Y. (2024) ZNF460-Mediated CircRPPH1 Promotes TNBC Progression through ITGA5-Induced FAK/PI3K/AKT Activation in a CeRNA Manner. Molecular Cancer, 23, Article No. 33.
https://doi.org/10.1186/s12943-024-01944-w
[20]  Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674.
https://doi.org/10.1016/j.cell.2011.02.013
[21]  Kumagai, S., Koyama, S., Itahashi, K., et al. (2022) Lactic Acid Promotes PD-1 Expression in Regulatory T Cells in Highly Glycolytic Tumor Microenvironments. Cancer Cell, 40, 201-218.E9.
[22]  Contat, C., Ancey, P.B., Zangger, N., et al. (2020) Combined Deletion of Glut1 and Glut3 Impairs Lung Adenocarcinoma Growth. ELife, 9, e53618.
https://doi.org/10.7554/eLife.53618
[23]  Saxton, R.A. and Sabatini, D.M. (2017) MTOR Signaling in Growth, Metabolism, and Disease. Cell, 168, 960-976.
https://doi.org/10.1016/j.cell.2017.02.004
[24]  Chen, J., Ou, Y., Luo, R., et al. (2021) SAR1B Senses Leucine Levels to Regulate MTORC1 Signalling. Nature, 596, 281-284.
https://doi.org/10.1038/s41586-021-03768-w
[25]  Shi, D.D., Guo, J.A., Hoffman, H.I., et al. (2022) Therapeutic Avenues for Cancer Neuroscience: Translational Frontiers and Clinical Opportunities. The Lancet. Oncology, 23, E62-E74.
https://doi.org/10.1016/S1470-2045(21)00596-9
[26]  Xu, Y., Yan, J., Tao, Y., et al. (2022) Pituitary Hormone α-MSH Promotes Tumor-Induced Myelopoiesis and Immunosuppression. Science (New York, N.Y.), 377, 1085-1091.
https://doi.org/10.1126/science.abj2674
[27]  Chen, D., Xiao, Y. and Zhong, K. (2022) Risk Factors and Pathogenic Mechanism for Secondary Primary Lung Cancer in Breast Cancer Patients: A Review. Chinese Journal of Lung Cancer, 25, 750-755.
[28]  Imbert, A., Chaffanet, M., Essioux, L., et al. (1996) Integrated Map of the Chromosome 8p12-p21 Region, a Region Involved in Human Cancers and Werner Syndrome. Genomics, 32, 29-38.
https://doi.org/10.1006/geno.1996.0073
[29]  Shen, Z., Chen, B., Gan, X., et al. (2016) Methylation of Neurofilament Light Polypeptide Promoter Is Associated with Cell Invasion and Metastasis in NSCLC. Biochemical and Biophysical Research Communications, 470, 627-634.
https://doi.org/10.1016/j.bbrc.2016.01.094
[30]  Wlodarczyk, B., Gasiorowska, A., Borkowska, A. and Malecka-Panas, E. (2017) Evaluation of Insulin-Like Growth Factor (IGF-1) and Retinol Binding Protein (RBP-4) Levels in Patients with Newly Diagnosed Pancreatic Adenocarcinoma (PDAC). Pancreatology, 17, 623-628.
https://doi.org/10.1016/j.pan.2017.04.001
[31]  Wang, D.D., Zhao, Y.M., Wang, L., et al. (2011) Preoperative Serum Retinol-Binding Protein 4 Is Associated with the Prognosis of Patients with Hepatocellular Carcinoma after Curative Resection. Journal of Cancer Research and Clinical Oncology, 137, 651-658.
https://doi.org/10.1007/s00432-010-0927-3
[32]  Tang, W., Li, X., Ma, Z.Z. and Li, C.Y. (2018) Significance of Retinol-Binding Protein Expression in Patients with Acute Myeloid Leukemia. Journal of Experimental Hematology, 26, 417-421.
[33]  Hu, X., Huang, W., Wang, F., Dai, Y., Hu, X., Yue, D. and Wang, S. (2020) Serum Levels of Retinol-Binding Protein 4 and the Risk of Non-Small Cell Lung Cancer: A Case-Control Study. Medicine, 99, E21254.
https://doi.org/10.1097/MD.0000000000021254
[34]  Mosesson, M.W. (2005) Fibrinogen and Fibrin Structure and Functions. Journal of Thrombosis and Haemostasis: JTH, 3, 1894-1904.
https://doi.org/10.1111/j.1538-7836.2005.01365.x
[35]  Wang, M., Zhang, G., Zhang, Y., et al. (2020) Fibrinogen Alpha Chain Knockout Promotes Tumor Growth and Metastasis through Integrin-AKT Signaling Pathway in Lung Cancer. Molecular Cancer Research: MCR, 18, 943-954.
https://doi.org/10.1158/1541-7786.MCR-19-1033
[36]  Pardridge, W.M., Boado, R.J. and Farrell, C.R. (1990) Brain-Type Glucose Transporter (GLUT-1) Is Selectively Localized to the Blood-Brain Barrier. Studies with Quantitative Western Blotting and in Situ Hybridization. The Journal of Biological Chemistry, 265, 18035-18040.
https://doi.org/10.1016/S0021-9258(18)38267-X
[37]  Amann, T., Maegdefrau, U., Hartmann, A., et al. (2009) GLUT1 Expression Is Increased in Hepatocellular Carcinoma and Promotes Tumorigenesis. The American Journal of Pathology, 174, 1544-1552.
https://doi.org/10.2353/ajpath.2009.080596
[38]  Krzeslak, A., Wojcik-Krowiranda, K., Forma, E., Jozwiak, P., Romanowicz, H., Bienkiewicz, A. and Brys, M. (2012) Expression of GLUT1 and GLUT3 Glucose Transporters in Endometrial and Breast Cancers. Pathology Oncology Research: POR, 18, 721-728.
https://doi.org/10.1007/s12253-012-9500-5
[39]  Wachi, S., Yoneda, K. and Wu, R. (2005) Interactome-Transcriptome Analysis Reveals the High Centrality of Genes Differentially Expressed in Lung Cancer Tissues. Bioinformatics (Oxford, England), 21, 4205-4208.
https://doi.org/10.1093/bioinformatics/bti688
[40]  Wang, Y., Shi, S., Ding, Y., Wang, Z., Liu, S., Yang, J. and Xu, T. (2017) Metabolic Reprogramming Induced by Inhibition of SLC2A1 Suppresses Tumor Progression in Lung Adenocarcinoma. International Journal of Clinical and Experimental Pathology, 10, 10759-10769.
[41]  Nemkov, T., Stephenson, D., Erickson, C., et al. (2024) Regulation of Kynurenine Metabolism by Blood Donor Genetics and Biology Impacts Red Cell Hemolysis in Vitro and in Vivo. Blood, 143, 456-472.
https://doi.org/10.1182/blood.2023022052
[42]  Yao, Y., Wang, X., Guan, J., et al. (2023) Metabolomic Differentiation of Benign vs Malignant Pulmonary Nodules with High Specificity via High-Resolution Mass Spectrometry Analysis of Patient Sera. Nature Communications, 14, Article No. 2339.
https://doi.org/10.1038/s41467-023-37875-1
[43]  Chu, H.Y., Chen, Z., Wang, L., et al. (2021) Dickkopf-1: A Promising Target for Cancer Immunotherapy. Frontiers in Immunology, 12, Article ID: 658097.
https://doi.org/10.3389/fimmu.2021.658097
[44]  Zhu, G., Song, J., Chen, W., Yuan, D., Wang, W., Chen, X., Liu, H., Su, H. and Zhu, J. (2021) Expression and Role of Dickkopf-1 (Dkk1) in Tumors: From the Cells to the Patients. Cancer Management and Research, 13, 659-675.
https://doi.org/10.2147/CMAR.S275172
[45]  Licchesi, J.D., Westra, W.H., Hooker, C.M., Machida, E.O., Baylin, S.B. and Herman, J.G. (2008) Epigenetic Alteration of Wnt Pathway Antagonists in Progressive Glandular Neoplasia of the Lung. Carcinogenesis, 29, 895-904.
https://doi.org/10.1093/carcin/bgn017
[46]  Shimura, T., Toiyama, Y., Hiro, J., et al. (2018) Monitoring Perioperative Serum Albumin Can Identify Anastomotic Leakage in Colorectal Cancer Patients with Curative Intent. Asian Journal of Surgery, 41, 30-38.
https://doi.org/10.1016/j.asjsur.2016.07.009
[47]  Wu, M.T., He, S.Y., Chen, S.L., Li, L.F., He, Z.Q., Zhu, Y.Y., He, X. and Chen, H. (2019) Clinical and Prognostic Implications of Pretreatment Albumin to C-Reactive Protein Ratio in Patients with Hepatocellular Carcinoma. BMC Cancer, 19, Article No. 538.
https://doi.org/10.1186/s12885-019-5747-5
[48]  Mantzorou, M., Koutelidakis, A., Theocharis, S. and Giaginis, C. (2017) Clinical Value of Nutritional Status in Cancer: What Is Its Impact and How It Affects Disease Progression and Prognosis? Nutrition and Cancer, 69, 1151-1176.
https://doi.org/10.1080/01635581.2017.1367947
[49]  Gras, J. (2012) Semuloparin for the Prevention of Venous Thromboembolic Events in Cancer Patients. Drugs of Today (Barcelona, Spain: 1998), 48, 451-457.
https://doi.org/10.1358/dot.2012.48.7.1838374
[50]  Ravasco, P., Monteiro-Grillo, I. and Camilo, M. (2012) Individualized Nutrition Intervention Is of Major Benefit to Colorectal Cancer Patients: Long-Term Follow-Up of a Randomized Controlled Trial of Nutritional Therapy. The American Journal of Clinical Nutrition, 96, 1346-1353.
https://doi.org/10.3945/ajcn.111.018838
[51]  Egenvall, M., M?rner, M., Martling, A. and Gunnarsson, U. (2018) Prediction of Outcome after Curative Surgery for Colorectal Cancer: Preoperative Haemoglobin, C-Reactive Protein and Albumin. Colorectal Disease: The Official Journal of the Association of Coloproctology of Great Britain and Ireland, 20, 26-34.
https://doi.org/10.1111/codi.13807
[52]  Vazeille, C., Jouinot, A., Durand, J.P., Neveux, N., Boudou-Rouquette, P., Huillard, O., Alexandre, J., Cynober, L. and Goldwasser, F. (2017) Relation between Hypermetabolism, Cachexia, and Survival in Cancer Patients: A Prospective Study in 390 Cancer Patients before Initiation of Anticancer Therapy. The American Journal of Clinical Nutrition, 105, 1139-1147.
https://doi.org/10.3945/ajcn.116.140434
[53]  Zhang, Y. and Xiao, G. (2019) Prognostic Significance of the Ratio of Fibrinogen and Albumin in Human Malignancies: A Meta-Analysis. Cancer Management and Research, 11, 3381-3393.
https://doi.org/10.2147/CMAR.S198419
[54]  Mizejewski, G.J. (2004) Biological Roles of Alpha-Fetoprotein during Pregnancy and Perinatal Development. Experimental Biology and Medicine (Maywood, N.J.), 229, 439-463.
https://doi.org/10.1177/153537020422900602
[55]  Yang, J.Y., Li, X., Gao, L., Teng, Z.H. and Liu, W.C. (2012) Co-Transfection of Dendritic Cells with AFP and IL-2 Genes Enhances the Induction of Tumor Antigen-Specific Antitumor Immunity. Experimental and Therapeutic Medicine, 4, 655-660.
https://doi.org/10.3892/etm.2012.635
[56]  Llovet, J.M., Montal, R., Sia, D. and Finn, R.S. (2018) Molecular Therapies and Precision Medicine for Hepatocellular Carcinoma. Nature Reviews. Clinical Oncology, 15, 599-616.
https://doi.org/10.1038/s41571-018-0073-4

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413