全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种可自适应调节温度的单双极切换射频消融系统研究
Research on a Single and Bipolar Switching RF Ablation System with Adaptive Temperature Adjustment

DOI: 10.12677/hjbm.2024.142031, PP. 278-288

Keywords: 射频消融,PID控制算法,实时温度监测,活体实验
Radiofrequency Ablation
, PID Control Algorithm, Real-Time Temperature Monitoring, Live Experiment

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文介绍了一种新的基于温度,电压,功率三种PID模式控制下的可进行单双极切换的肺部射频消融设备。该射频消融设备采串级PID (比例–积分–微分)控制系统,可以实现对射频消融的速度和深度进行精确的控制和调整,以提高手术效率和准确性。此外,该设备还具有单双极切换功能,根据不同的病灶特征进行选择,适用于肿瘤或其他病变部位的消融治疗。它还集成了先进的温度控制技术,通过消融导管注入生理盐水,能够实时监测组织的温度变化并自动调节功率输出,以确保消融的同时避免局部组织烧灼或损伤。并且进行了活体猪实验拍摄CT。结果表明消融效果良好,消融的范围在3.0~4.5 cm左右,对于肺部临床有一定的参考价值。
In this paper, we introduce a new radiofrequency ablation device for lung that can perform single and bipolar switching under the control of three PID modes: temperature, voltage and power. This radio frequency ablation device uses PID (proportional Integral-differential) control system, which can achieve accurate control and adjustment of the speed and depth of radio frequency ablation to improve the efficiency and accuracy of surgery. In addition, the device also has a single-bipolar switching function, which can be selected according to different focal characteristics, and is suitable for ablation therapy of tumors or other pathological sites. It also integrates advanced temperature control technology, injecting normal saline through an ablation catheter, which is able to monitor the temperature changes of the tissue in real time and automatically adjust the power output to ensure ablation while avoiding local tissue burning or damage. A live pig experiment was carried out to take CT measurements. The results showed that the ablation effect was good, and the ablation range was about 3.0~4.5 cm, which was of certain value for lung clinic.

References

[1]  郭孟刚, 李丽. 热消融在肺癌治疗中的研究进展[J]. 中国医药指南, 2015, 13(26): 44-46.
[2]  Cramer, P. and Pua, B.B. (2023) The Latest on Lung Ablation. Seminars in Interventional Radiology, 39, 285-291.
https://doi.org/10.1055/s-0042-1753526
[3]  王科, 曹金梁, 王炜华, 胡晓冬, 刘宇罡. 射频消融在肺癌治疗中的应用进展[J]. 内蒙古医学杂志, 2009, 41(11): 1325-1328.
[4]  管慧玲. 射频消融和冷冻消融治疗肺癌的有效性及安全性对比研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2022.
[5]  吕艺华, 赵子龙, 刘利国, 张美云, 郭永红. 高温射频消融结合放化疗治疗肺部肿瘤的临床研究[J]. 系统医学, 2018, 3(24): 147-148 151.
[6]  Mathiesen, M., Holm, J. and Thorsteinsson, M. (2023) Radio Frequency Ablation of Dysplastic Barrett’s Esophagus: Outcomes of a Single-Center Registry. Scandinavian Journal of Surgery, 112, 86-90.
https://doi.org/10.1177/14574969231151378
[7]  高芳. 双极射频消融在心律失常治疗中的应用进展[J]. 中国医疗器械信息, 2021, 27(3): 41-42.
[8]  陈子乐, 崔海坡, 芦映希, 郎景成. 肿瘤射频消融针材料设计与温度场仿真分析[J]. 生物医学工程学杂志, 2022, 39(5): 958-965.
[9]  谭运华. 多电极转换射频消融系统治疗肝细胞癌临床和基础研究[D]: [博士学位论文]. 重庆: 中国人民解放军陆军军医大学, 2017.
[10]  金奇, 邓志杰. PID控制原理及参数整定方法[J]. 重庆工学院学报(自然科学版), 2008, 22(5): 91-94.
[11]  俞红卫. 一种PID控制与模糊控制相结合的智能温度控制系统[J]. 上海应用技术学院学报(自然科学版), 2007, 7(2): 106-109.
[12]  王民明. 射频消融治疗仪输出功率的PID控制策略[J]. 价值工程, 2016, 35(21): 194-198.
[13]  张萌, 田甄, 程妍妍, 刘洪兴, 南群. 双曲线传热模型在微波消融治疗房颤中的应用研究[J]. 生物医学工程学杂志, 2021, 38(5): 885-892.
[14]  成志新, 孟辉, 刘传永, 等. 模糊控制在射频消融温度与阻抗监测系统中的应用[J]. 生物医学工程研究, 2019, 38(2): 201-205.
[15]  Schwartz, A., Desolneux, G., Desjardin, M., Evrard, S. and Bechade, D. (2013) Symptomatic Diaphragmatic Hernia after Pulmonary Radiofrequency Ablation. Journal of Visceral Surgery, 150, 157-158.
https://doi.org/10.1016/j.jviscsurg.2013.01.005
[16]  吴薇薇, 李鹏, 吴水才, 等. 脑病灶射频消融手术规划系统的设计与实现[J]. 医疗卫生装备, 2015, 36(3): 14-16 20.
[17]  屠佳炜. 射频消融手术系统的稳定性研究[D]: [硕士学位论文]. 杭州: 杭州电子科技大学, 2020.
[18]  黄运东, 谷雪莲. 温控射频消融导管的温度感应性实验研究[J]. 生物医学工程学杂志, 2010, 27(1): 28-32.
[19]  赵坤, 赵永福, 李功权, 王郑封, 黄帅. 转换控制多电极射频消融治疗肝肿瘤的疗效评价[J]. 中华肝脏外科手术学电子杂志, 2019, 8(3): 234-237.
[20]  王海彦, 洪敏, 杜晓培, 等. 双极与单极射频消融术治疗心脏瓣膜病合并心房颤动的有效性和安全性对照研究[J]. 中西医结合心脑血管病杂志, 2023, 21(13): 2465-2469.
[21]  陈英凯, 吴启玉, 黄乃祥. 射频消融对离体猪肺消融靶区内不同部位灭活效果的实验研究[J]. 安徽医科大学学报, 2012, 47(10): 1161-1164.
[22]  Dassa, M., Izaaryene, J., Daidj, N. and Piana, G. (2021) Efficacy of Tract Embolization after Percutaneous Pulmonary Radiofrequency Ablation. Cardio Vascular and Interventional Radiology, 44, 903-910.
https://doi.org/10.1007/s00270-020-02745-6
[23]  Kalin, A., Hassan, M., Anderson, M. and Rahman, N. (2018) Bilious Pleuritis Following Transpulmonary Radiofrequency Ablation of Liver Metastases. Thorax, 73, 493-494.
https://doi.org/10.1136/thoraxjnl-2017-210508
[24]  叶筱, 陈苍松, 郑许强. 不同呼吸状态对超高龄患者肺部CT图像质量的影响[J]. 实用医技杂志, 2023, 30(2): 116-118.
[25]  Esquenazi, A., Talaty, M., Packel, A. and Saulino, M. (2012) The ReWalk Powered Exoskeleton to Restore Ambulatory Function to Individuals with Thoracic-Level Motor-Complete Spinal Cord Injury. American Journal of Physical Medicine & Rehabilitation, 91, 911-921.
https://doi.org/10.1097/PHM.0b013e318269d9a3
[26]  王彦锋, 李金鹏, 李月考, 等. CT评估正常通气猪肺射频与微波消融效果的研究[J]. 放射学实践, 2017, 32(7): 674-678.
[27]  Mirniaharikandehei, S., Abdihamzehkolaei, A., Choquehuanca, A., et al. (2023) Automated Quantification of Pneumonia Infected Volume in Lung CT Images: A Comparison with Subjective Assessment of Radiologists. Bioengineering, 10, Article 321.
https://doi.org/10.3390/bioengineering10030321
[28]  覃文军, 李小硕, 周庆华, 等. 肺部影像解剖结构分割数据集及应用[J]. 中国图象图形学报, 2021, 26(9): 2111-2120.
[29]  张桥, 莫阿里, 高恒毅, 等. 直径不大于5cm孤立性肝癌: 射频消融与手术治疗的比较[J]. 岭南现代临床外科, 2022, 22(4): 328-335.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413