全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CD48与配体的相互作用及疾病中的研究进展
The Interaction between CD48 with Ligands and the Research Progress in Diseases

DOI: 10.12677/hjbm.2024.142032, PP. 289-297

Keywords: CD48,配体,CD244 (2B4),CD2
CD48
, Ligand, CD244 (2B4), CD2

Full-Text   Cite this paper   Add to My Lib

Abstract:

信号转导淋巴细胞激活分子(SLAM)受体家族(SLAMF)是CD2超家族的一组受体,它是由许多造血细胞上表达的几个成员组成的。CD48作为信号淋巴细胞激活分子家族的成员,是一种糖基磷脂酰肌醇(GPI)锚定的细胞表面蛋白,参与免疫细胞的黏附和激活等作用。CD48最初是在病毒诱导的B细胞上发现的,经研究发现其结合CD2和其他分子,但它在小鼠和人类系统中的高亲和力配体是CD244 (2B4),同时还发现CD48也与一些外源性配体相作用。本文主要介绍CD48结构及其与不同配体之间作用,以及讨论了CD48在哮喘、系统性红斑狼疮、炎症性肠病、血液系统及肝恶性肿瘤等疾病中作用的研究。
The signal transduction lymphocyte activating molecule (SLAM) receptor family (SLAMF) is a group of receptors of the CD2 superfamily, which is composed of several members expressed on many hematopoietic cells. As a member of the family of signal lymphocyte activating molecules, CD48 is a cell surface protein anchored by glycosylphosphatidylinositol (GPI), which participates in the adhesion and activation of immune cells. CD48 was originally found in virus-induced B cells. It was found that it binds CD2 and other molecules, but its high affinity ligand in mouse and human system is CD244 (2B4). It is also found that CD48 also interacts with some exogenous ligands. This paper mainly introduces the structure of CD48 and its interaction with different ligands, and discusses the role of CD48 in asthma, systemic lupus erythematosus, inflammatory bowel disease, hematological system and liver malignant tumors.

References

[1]  Dragovich, M.A.and Mor, A. (2018) The SLAM Family Receptors: Potential Therapeutic Targets for Inflammatory and Autoimmune Diseases. Autoimmunity Reviews, 17, 674-682.
https://doi.org/10.1016/j.autrev.2018.01.018
[2]  Calpe, S., Wang, N., Romero, X., Berger, S.B., Lanyi, A., Engel, P., et al. (2008) The SLAM and SAP Gene Families Control Innate and Adaptive Immune Responses. Advances in Immunology, 97, 177-250.
https://linkinghub.elsevier.com/retrieve/pii/S0065277608000047
https://doi.org/10.1016/S0065-2776(08)00004-7
[3]  Cannons, J.L., Tangye, S.G. and Schwartzberg, P.L. (2011) SLAM Family Receptors and SAP Adaptors in Immunity. Annual Review of Immunology, 29, 665-705.
https://doi.org/10.1146/annurev-immunol-030409-101302
[4]  Thorley-Lawson, D.A., Schooley, R.T., Bhan, A.K. and Nadler, L.M. (1982) Epstein-Barr Virus Superinduces a New Human B Cell Differentiation Antigen (B-LAST 1) Expressed on Transformed Lymphoblasts. Cell, 30, 415-425.
https://doi.org/10.1016/0092-8674(82)90239-2
[5]  Staunton, D.E., Fisher, R.C., LeBeau, M.M., Lawrence, J.B., Barton, D.E., Francke, U., et al. (1989) Blast-1 Possesses a Glycosyl-Phosphatidylinositol (GPI) Membrane Anchor, Is Related to LFA-3 and OX-45, and Maps to Chromosome 1q21-23. Journal of Experimental Medicine, 169, 1087-1099.
https://doi.org/10.1084/jem.169.3.1087
[6]  McArdel, S.L., Terhorst, C. and Sharpe, A.H. (2016) Roles of CD48 in Regulating Immunity and Tolerance. Clinical immunology (Orlando, Fla.), 164, 10-20.
https://doi.org/10.1016/j.clim.2016.01.008
[7]  Smith, G.M., Biggs, J., Norris, B., Anderson-Stewart, P. and Ward, R. (1997) Detection of a Soluble Form of the Leukocyte Surface Antigen CD48 in Plasma and Its Elevation in Patients with Lymphoid Leukemias and Arthritis. Journal of Clinical Immunology, 17, 502-509.
https://doi.org/10.1023/A:1027327912204
[8]  Metz, C.N., Brunner, G., Choi-Muira, N.H., Nguyen, H., Gabrilove, J., Caras, I.W., et al. (1994) Release of GPI-Anchored Membrane Proteins by a Cell-Associated GPI-Specific Phospholipase D. The EMBO Journal, 13, 1741-1751.
https://doi.org/10.1002/j.1460-2075.1994.tb06438.x
[9]  Elishmereni, M., Fyhrquist, N., Singh Gangwar, R., Lehtim?ki, S., Alenius, H. and Levi-Schaffer, F. (2014) Complex 2B4 Regulation of Mast Cells and Eosinophils in Murine Allergic Inflammation. Journal of Investigative Dermatology, 134, 2928-2937.
https://doi.org/10.1038/jid.2014.280
[10]  Munitz, A., Bachelet, I., Finkelman, F.D., Rothenberg, M.E. and Levi-Schaffer, F. (2007) CD48 Is Critically Involved in Allergic Eosinophilic Airway Inflammation. American Journal of Respiratory and Critical Care Medicine, 175, 911-918.
https://doi.org/10.1164/rccm.200605-695OC
[11]  Gangwar, R.S., Minai-Fleminger, Y., Seaf, M., Gutgold, A., Shikotra, A., Barber, C., et al. (2017) CD48 on Blood Leukocytes and in Serum of Asthma Patients Varies with Severity. Allergy, 72, 888-895.
https://doi.org/10.1111/all.13082
[12]  Tissot, C., Rebouissou, C., Klein, B. and Mechti, N. (1997) Both Human α/β and γ Interferons Upregulate the Expression of CD48 Cell Surface Molecules. Journal of Interferon & Cytokine Research, 17, 17-26.
https://doi.org/10.1089/jir.1997.17.17
[13]  Pahima, H., Zaffran, I., Ben-Chetrit, E., Jarjoui, A, Gaur, P., Manca, M.L., et al. (2022) COVID-19 Patients Are Characterized by Dysregulated Levels of Membrane and Soluble CD48. Annals of Allergy, Asthma & Immunology, 208, Article 161.04.
https://doi.org/10.4049/jimmunol.208.Supp.161.04
[14]  Wu, Y., Kuang, D.M., Pan, W.D., Wan, Y.L., Lao, X.M., Wang, D., et al. (2013) Monocyte/Macrophage-Elicited Natural Killer Cell Dysfunction in Hepatocellular Carcinoma Is Mediated by CD48/2B4 Interactions. Hepatology, 57, 1107-1116.
https://doi.org/10.1002/hep.26192
[15]  Hosen, N., Ichihara, H., Mugitani, A., Aoyama, Y., Fukuda, Y., Kishida, S., et al. (2012) CD48 as a Novel Molecular Target for Antibody Therapy in Multiple Myeloma. British Journal of Haematology, 156, 213-224.
https://doi.org/10.1111/j.1365-2141.2011.08941.x
[16]  Chiba, M., Shimono, J., Ishio, T., Takei, N., kasahara, K., Ogasawara, R., et al. (2022) Genome-Wide CRISPR Screens Identify CD48 Defining Susceptibility to NK Cytotoxicity in Peripheral T-Cell Lymphomas. Blood, 140, 1951-1963.
https://doi.org/10.1182/blood.2022015646
[17]  Mardomi, A., Mohammadi, N., Khosroshahi, H.T. and Abediankenari, S. (2020) An Update on Potentials and Promises of T Cell Co-Signaling Molecules in Transplantation. Journal of Cellular Physiology, 235, 4183-4197.
https://doi.org/10.1002/jcp.29369
[18]  Dong, Z., Cruz-Munoz, M.E., Zhong, M.C., Chen, R., Latour, S. and Veillette, A. (2009) Essential Function for SAP Family Adaptors in the Surveillance of Hematopoietic Cells by Natural Killer Cells. Nature Immunology, 10, 973-980.
https://doi.org/10.1038/ni.1763
[19]  Claus, M., Urlaub, D., Fasbender, F. and Watzl, C. (2019) SLAM Family Receptors in Natural Killer Cells-Mediators of Adhesion, Activation and Inhibition via cis and Trans Interactions. Clinical Immunology, 204, 37-42.
https://doi.org/10.1016/j.clim.2018.10.011
[20]  Nichols, K.E., Harkin, D.P., Levitz, S., Krainer, M., Kolquist, K.A., Genovese, C., et al. (1998) Inactivating Mutations in an SH2 Domain-Encoding Gene in X-Linked Lymphoproliferative Syndrome. Proceedings of the National Academy of Sciences of the United States of America, 95, 13765-13770.
https://doi.org/10.1073/pnas.95.23.13765
[21]  Pahima, H., Puzzovio, P.G. and Levi-Schaffer, F. (2019) 2B4 and CD48: A Powerful Couple of the Immune System. Clinical Immunology, 204, 64-68.
https://doi.org/10.1016/j.clim.2018.10.014
[22]  Taniguchi, R.T., Guzior, D. and Kumar, V. (2007) 2B4 Inhibits NK-Cell Fratricide. Blood, 110, 2020-2023.
https://doi.org/10.1182/blood-2007-02-076927
[23]  Mathew, S.O., Kumaresan, P.R., Lee, J.K., Huynh, V.T. and Mathew, P.A. (2005) Mutational Analysis of the Human 2B4 (CD244)/CD48 Interaction: Lys 68 and Glu 70 in the V Domain of 2B4 Are Critical for CD48 Binding and Functional Activation of NK Cells. The Journal of Immunology, 175, 1005-1013.
https://doi.org/10.4049/jimmunol.175.2.1005
[24]  Claus, M., Wingert, S. and Watzl, C. (2016) Modulation of Natural Killer Cell Functions by Interactions between 2B4 and CD48 in cis and in Trans. Open Biology, 6, Article 160010.
https://doi.org/10.1098/rsob.160010
[25]  Tufa, D.M., Yingst, A.M., Trahan, G.D., Shank, T., Jones, D., Shim, S., et al. (2020) Human Innate Lymphoid Cell Precursors Express CD48 That Modulates ILC Differentiation through 2B4 Signaling. Science Immunology, 5, eaay4218.
https://doi.org/10.1126/sciimmunol.aay4218
[26]  Assarsson, E., Kambayashi, T., Schatzle, J.D., Cramer, S.O., von Bonin, A., Jensen, P.E., et al. (2004) NK Cells Stimulate Proliferation of T and NK Cells through 2B4/CD48 Interactions. The Journal of Immunology, 173, 174-180.
https://doi.org/10.4049/jimmunol.173.1.174
[27]  Lee, K.M., Bhawan, S., Majima, T., Wei, H., Nishimura, M.I., Yagita, H., et al. (2003) Cutting Edge: The NK Cell Receptor 2B4 Augments Antigen-Specific T Cell Cytotoxicity through CD48 Ligation on Neighboring T Cells. The Journal of Immunology, 170, 4881-4885.
https://doi.org/10.4049/jimmunol.170.10.4881
[28]  Kis-Toth, K. and Tsokos, G.C. (2014) Engagement of SLAMF2/CD48 Prolongs the Time Frame of Effective T Cell Activation by Supporting Mature Dendritic Cell Survival. The Journal of Immunology, 192, 4436-4442.
https://doi.org/10.4049/jimmunol.1302909
[29]  Elishmereni, M., Bachelet, I., Nissim Ben-Efraim, A.H., Mankuta, D. and Levi-Schaffer, F. (2013) Interacting Mast Cells and Eosinophils Acquire an Enhanced Activation State in vitro. Allergy, 68, 171-179.
https://doi.org/10.1111/all.12059
[30]  Matsui, T., Connolly, J.E., Michnevitz, M., Chaussabel, D., Yu, C.I., Glaser, C., et al. (2009) CD2 Distinguishes Two Subsets of Human Plasmacytoid Dendritic Cells with Distinct Phenotype and Functions. The Journal of Immunology, 182, 6815-6823.
https://doi.org/10.4049/jimmunol.0802008
[31]  Evans, E.J., Castro, M.A.A., O’Brien, R., Kearney, A., Walsh, H., Sparks, L.M., et al. (2006) Crystal Structure and Binding Properties of the CD2 and CD244 (2B4)-Binding Protein, CD48. Journal of Biological Chemistry, 281, 29309-19320.
https://doi.org/10.1074/jbc.M601314200
[32]  Dustin, M.L., Sanders, M.E., Shaw, S. and Springer, T.A. (1987) Purified Lymphocyte Function-Associated Antigen 3 Binds to CD2 and Mediates T Lymphocyte Adhesion. Journal of Experimental Medicine, 165, 677-692.
https://doi.org/10.1084/jem.165.3.677
[33]  Van Der Merwe, P.A., McPherson, D.C., Brown, M.H., Barclay, A.N., Cyster, J.G., Williams, A.F., et al. (1993) The NH2-Terminal Domain of Rat CD2 Binds Rat CD48 with a Low Affinity and Binding Does not Require Glycosylation of CD2. European Journal of Immunology, 23, 1373-1377.
https://doi.org/10.1002/eji.1830230628
[34]  Li, B., Lu, Y., Zhong, M.C., Qian, J., Li, R., Davidson, D., et al. (2022) cis Interactions between CD2 and Its Ligands on T Cells Are Required for T Cell Activation. Science Immunology, 7, eabn6373.
https://doi.org/10.1126/sciimmunol.abn6373
[35]  Qin, L., Chavin, K.D., Lin, J., Yagita, H. and Bromberg, J.S. (1994) Anti-CD2 Receptor and Anti-CD2 Ligand (CD48) Antibodies Synergize to Prolong Allograft Survival. Journal of Experimental Medicine, 179, 341-346.
https://doi.org/10.1084/jem.179.1.341
[36]  Whitelock, J.M. and Iozzo, R.V. (2005) Heparan Sulfate: A Complex Polymer Charged with Biological Activity. Chemical Reviews, 105, 2745-2764.
https://doi.org/10.1021/cr010213m
[37]  Ianelli, C.J., DeLellis, R. and Thorley-Lawson, D.A. (1998) CD48 Binds to Heparan Sulfate on the Surface of Epithelial Cells. Journal of Biological Chemistry, 273, 23367-23375.
https://doi.org/10.1074/jbc.273.36.23367
[38]  Baorto, D.M., Gao, Z., Malaviya, R., Dustin, M.L., van der Merwe, A., Lublin, D.M., et al. (1997) Survival of FimH-Expressing Enterobacteria in Macrophages Relies on Glycolipid Traffic. Nature, 389, 636-639.
https://doi.org/10.1038/39376
[39]  M?ller, J., Lühmann, T., Chabria, M., Hall, H. and Vogel, V. (2013) Macrophages Lift off Surface-Bound Bacteria Using a Filopodium-Lamellipodium Hook-and-Shovel Mechanism. Scientific Reports, 3, Article No. 2884.
https://doi.org/10.1038/srep02884
[40]  Mu?oz, S., Hernández-Pando, R., Abraham, S.N. and Enciso, J.A. (2003) Mast Cell Activation by Mycobacterium Tuberculosis: Mediator Release and Role of CD48. The Journal of Immunology, 170, 5590-5596.
https://doi.org/10.4049/jimmunol.170.11.5590
[41]  Gangwar, R.S. and Levi-Schaffer, F. (2016) sCD48 Is Anti-Inflammatory in Staphylococcus Aureus Enterotoxin B-Induced Eosinophilic Inflammation. Allergy, 71, 829-839.
https://doi.org/10.1111/all.12851
[42]  Hamid, Q. and Tulic, M. (2009) Immunobiology of Asthma. Annual Review of Physiology, 71, 489-507.
https://doi.org/10.1146/annurev.physiol.010908.163200
[43]  Ip, W.K., Wong, C.K., Wang, C.B., Tian, Y.P. and Lam, C.W.K. (2005) Interleukin-3,-5, and Granulocyte Macrophage Colony-Stimulating Factor Induce Adhesion and Chemotaxis of Human Eosinophils via p38 Mitogen-Activated Protein Kinase and Nuclear Factor κB. Immunopharmacology and Immunotoxicology, 27, 371-393.
https://doi.org/10.1080/08923970500240925
[44]  Klaman, L.D. and Thorley-Lawson, D.A. (1995) Characterization of the CD48 Gene Demonstrates a Positive Element that Is Specific to Epstein-Barr Virus-Immortalized B-Cell Lines and Contains an Essential NF-Kappa B Site. Journal of Virology, 69, 871-881.
https://doi.org/10.1128/jvi.69.2.871-881.1995
[45]  Ha, S.G., Ge, X.N., Bahaie, N.S., Kang, B.N., Rao, A., Rao, S.P., et al. (2013) ORMDL3 Promotes Eosinophil Trafficking and Activation via Regulation of Integrins and CD48. Nature Communications, 4, Article No. 2479.
https://doi.org/10.1038/ncomms3479
[46]  Munitz, A., Bachelet, I., Fraenkel, S., Katz, G., Mandelboim, O., Simon, H.U., et al. (2005) 2B4 (CD244) Is Expressed and Functional on Human Eosinophils. The Journal of Immunology, 174, 110-118.
https://doi.org/10.4049/jimmunol.174.1.110
[47]  Chen, R., Relouzat, F., Roncagalli, R., Aoukaty, A., Tan, R., Latour, S., et al. (2004) Molecular Dissection of 2B4 Signaling: Implications for Signal Transduction by SLAM-Related Receptors. Molecular and Cellular Biology, 24, 5144-5156.
https://doi.org/10.1128/MCB.24.12.5144-5156.2004
[48]  Zhang, T., Fang, Q., Liu, P., Wang, P., Feng, C. and Wang, J. (2022) Heme Oxygenase 1 Overexpression Induces Immune Evasion of Acute Myeloid Leukemia against Natural Killer Cells by Inhibiting CD48. Journal of Translational Medicine, 20, Article No. 394.
https://doi.org/10.1186/s12967-022-03589-z
[49]  Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 7, 7-33.
https://doi.org/10.3322/caac.21654
[50]  Umemoto, T., Johansson, A., Ahmad, S.A.I., Hashimoto, M., Kubota, S., Kikuchi, K., et al. (2022) ATP Citrate Lyase Controls Hematopoietic Stem Cell Fate and Supports Bone Marrow Regeneration. The EMBO Journal, 41, e109463.
https://onlinelibrary.wiley.com/doi/10.15252/embj.2021109463
https://doi.org/10.15252/embj.2021109463
[51]  Bald, T., Krummel, M.F., Smyth, M.J. and Barry, K.C. (2020) The NK Cell-Cancer Cycle: Advances and New Challenges in NK Cell-Based Immunotherapies. Nature Immunology, 21, 835-847.
https://doi.org/10.1038/s41590-020-0728-z
[52]  O’Shea, J.J., Holland, S.M. and Staudt, L.M. (2013) JAKs and STATs in Immunity, Immunodeficiency, and Cancer. The New England Journal of Medicine, 368, 161-170.
https://doi.org/10.1056/NEJMra1202117
[53]  Stark, G.R. and Darnell, J.E. (2012) The JAK-STAT Pathway at Twenty. Immunity, 36, 503-514.
https://doi.org/10.1016/j.immuni.2012.03.013
[54]  Morichika, K., Karube, K., Kayo, H., Uchino, S., Nishi, Y., Nakachi, S., et al. (2019) Phosphorylated STAT 3 Expression Predicts Better Prognosis in Smoldering Type of Adult T-Cell Leukemia/Lymphoma. Cancer Science, 110, 2982-2991.
https://doi.org/10.1111/cas.14114
[55]  Maeda, M., Tanabe-Shibuya, J., Miyazato, P., Masutani, H., Yasunaga, J.I, Usami, K., et al. (2020) IL-2/IL-2 Receptor Pathway Plays a Crucial Role in the Growth and Malignant Transformation of HTLV-1-Infected T Cells to Develop Adult T-Cell Leukemia. Frontiers in Microbiology, 11, Article 356.
https://doi.org/10.3389/fmicb.2020.00356
[56]  Keszei, M., Latchman, Y.E., Vanguri, V.K., Brown, D.R., Detre, C., Morra, M., et al. (2011) Auto-Antibody Production and Glomerulonephritis in Congenic Slamf1-/- and Slamf2-/- [B6.129] but not in Slamf1-/- and Slamf2-/- [BALB/c.129] Mice. International Immunology, 23, 149-158.
https://doi.org/10.1093/intimm/dxq465
[57]  Koh, A.E., Njoroge, S.W., Feliu, M., Cook, A., Selig, M.K., Latchman, Y.E., et al. (2011) The SLAM Family Member CD48 (Slamf2) Protects Lupus-Prone Mice from Autoimmune Nephritis. Journal of Autoimmunity, 37, 48-57.
https://doi.org/10.1016/j.jaut.2011.03.004
[58]  Balada, E., Castro-Marrero, J., Pujol, A.P., Torres-Salido, M.T., Vilardell-Tarrés, M. and Ordi-Ros, J. (2011) Enhanced Transcript Levels of CD48 in CD4 T Cells from Systemic Lupus Erythematosus Patients. Immunobiology, 216, 1034-1037.
https://doi.org/10.1016/j.imbio.2011.03.004
[59]  Karampetsou, M.P., Comte, D., Kis-Toth, K., Kyttaris, V.C. and Tsokos, G.C. (2017) Expression Patterns of Signaling Lymphocytic Activation Molecule Family Members in Peripheral Blood Mononuclear Cell Subsets in Patients with Systemic Lupus Erythematosus. PLOS ONE, 12, e0186073.
https://doi.org/10.1371/journal.pone.0186073
[60]  Moran, M. and Miceli, M.C. (1998) Engagement of GPI-Linked CD48 Contributes to TCR Signals and Cytoskeletal Reorganization. Immunity, 9, 787-796.
https://doi.org/10.1016/S1074-7613(00)80644-5
[61]  Krishnan, S., Nambiar, M.P., Warke, V.G., Fisher, C.U., Mitchell, J., Delaney, N., et al. (2004) Alterations in Lipid Raft Composition and Dynamics Contribute to Abnormal T Cell Responses in Systemic Lupus Erythematosus. The Journal of Immunology, 172, 7821-7831.
https://doi.org/10.4049/jimmunol.172.12.7821
[62]  Abadía-Molina, A.C., Ji, H., Faubion, W.A., Julien, A., Latchman, Y., Yagita, H., et al. (2006) CD48 Controls T-Cell and Antigen-Presenting Cell Functions in Experimental Colitis. Gastroenterology, 130, 424-434.
https://doi.org/10.1053/j.gastro.2005.12.009
[63]  Luan, H.H., Wang, A., Hilliard, B.K., Carvalho, F., Rosen, C.E., Ahasic, A.M., et al. (2019) GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance. Cell, 178, 1231-1244. E11.
https://doi.org/10.1016/j.cell.2019.07.033
[64]  Uhlen, M., Zhang, C., Lee, S., Sj?stedt, E., Fagerberg, L., Bidkhori, G., et al. (2017) A Pathology Atlas of the Human Cancer Transcriptome. Science, 357, eaan2507.
https://doi.org/10.1126/science.aan2507
[65]  Wang, Z., He, L., Li, W., Xu, C., Zhang, J., Wang, D., et al. (2021) GDF15 Induces Immunosuppression via CD48 on Regulatory T Cells in Hepatocellular Carcinoma. The Journal for ImmunoTherapy of Cancer, 9, e002787.
https://doi.org/10.1136/jitc-2021-002787
[66]  Nishikawa, A., Suzuki, K., Kassai, Y., Gotou, Y., Takiguchi, M., Miyazaki, T., et al. (2016) Identification of Definitive Serum Biomarkers Associated with Disease Activity in Primary Sj?gren’s Syndrome. Arthritis Research & Therapy, 18, Article 106.
https://doi.org/10.1186/s13075-016-1006-1

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413